- merge v0.01 --> Añadido fileselector - Añadidas fuentes de Gem y Pure Data - pix2jpg incluído en Gem. Archivos de construcción de Gem modificados. - Añadido fichero ompiling.txt con instrucciones de compilación
2142 lines
85 KiB
C
2142 lines
85 KiB
C
/*
|
|
* jMax
|
|
* Copyright (C) 1994, 1995, 1998, 1999 by IRCAM-Centre Georges Pompidou, Paris, France.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* See file LICENSE for further informations on licensing terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Based on Max/ISPW by Miller Puckette.
|
|
*
|
|
* Authors: Maurizio De Cecco, Francois Dechelle, Enzo Maggi, Norbert Schnell.
|
|
*
|
|
*/
|
|
|
|
/* "expr" was written by Shahrokh Yadegari c. 1989. -msp */
|
|
/* "expr~" and "fexpr~" conversion by Shahrokh Yadegari c. 1999,2000 */
|
|
|
|
/*
|
|
* Feb 2002 - added access to variables
|
|
* multiple expression support
|
|
* new short hand forms for fexpr~
|
|
* now $y or $y1 = $y1[-1] and $y2 = $y2[-1]
|
|
* --sdy
|
|
*
|
|
* July 2002
|
|
* fixed bugs introduced in last changes in store and ET_EQ
|
|
* --sdy
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* vexp.c -- a variable expression evaluator
|
|
*
|
|
* This modules implements an expression evaluator using the
|
|
* operator-precedence parsing. It transforms an infix expression
|
|
* to a prefix stack ready to be evaluated. The expression sysntax
|
|
* is close to that of C. There are a few operators that are not
|
|
* supported and functions are also recognized. Strings can be
|
|
* passed to functions when they are quoted in '"'s. "[]" are implememted
|
|
* as an easy way of accessing the content of tables, and the syntax
|
|
* table_name[index].
|
|
* Variables (inlets) are specified with the following syntax: $x#,
|
|
* where x is either i(integers), f(floats), and s(strings); and #
|
|
* is a digit that coresponds to the inlet number. The string variables
|
|
* can be used as strings when they are quoted and can also be used as
|
|
* table names when they are followed by "[]".
|
|
*
|
|
* signal vectors have been added to this implementation:
|
|
* $v# denotes a signal vector
|
|
* $x#[index] is the value of a sample at the index of a the signal vector
|
|
* $x# is the shorthand for $x#[0]
|
|
* $y[index] is the value of the sample output at the index of a the
|
|
* signal output
|
|
* "index" for $x#[index] has to have this range (0 <= index < vectorsize)
|
|
* "index" for $y[index] has to have this range (0 < index < vectorsize)
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include "vexp.h"
|
|
#ifdef MSP
|
|
#undef isdigit
|
|
#define isdigit(x) (x >= '0' && x <= '9')
|
|
#endif
|
|
|
|
char *atoif(char *s, long int *value, long int *type);
|
|
|
|
static struct ex_ex *ex_lex(struct expr *expr, long int *n);
|
|
struct ex_ex *ex_match(struct ex_ex *eptr, long int op);
|
|
struct ex_ex *ex_parse(struct expr *expr, struct ex_ex *iptr,
|
|
struct ex_ex *optr, long int *argc);
|
|
struct ex_ex *ex_eval(struct expr *expr, struct ex_ex *eptr,
|
|
struct ex_ex *optr, int i);
|
|
|
|
int expr_donew(struct expr *exprr, int ac, t_atom *av);
|
|
struct ex_ex *eval_func(struct expr *expr,struct ex_ex *eptr,
|
|
struct ex_ex *optr, int i);
|
|
struct ex_ex *eval_tab(struct expr *expr, struct ex_ex *eptr,
|
|
struct ex_ex *optr, int i);
|
|
struct ex_ex *eval_var(struct expr *expr, struct ex_ex *eptr,
|
|
struct ex_ex *optr, int i);
|
|
struct ex_ex *eval_store(struct expr *expr, struct ex_ex *eptr,
|
|
struct ex_ex *optr, int i);
|
|
struct ex_ex *eval_sigidx(struct expr *expr, struct ex_ex *eptr,
|
|
struct ex_ex *optr, int i);
|
|
static int cal_sigidx(struct ex_ex *optr, /* The output value */
|
|
int i, t_float rem_i, /* integer and fractinal part of index */
|
|
int idx, /* index of current fexpr~ processing */
|
|
int vsize, /* vector size */
|
|
t_float *curvec, t_float *prevec); /* current and previous table */
|
|
t_ex_func *find_func(char *s);
|
|
void ex_dzdetect(struct expr *expr);
|
|
|
|
#define MAX_ARGS 10
|
|
extern t_ex_func ex_funcs[];
|
|
|
|
struct ex_ex nullex;
|
|
|
|
void set_tokens (char *s);
|
|
int getoken (struct expr *expr, struct ex_ex *eptr);
|
|
void ex_print (struct ex_ex *eptr);
|
|
#ifdef MSP
|
|
void atom_string(t_atom *a, char *buf, unsigned int bufsize);
|
|
|
|
void atom_string(t_atom *a, char *buf, unsigned int bufsize)
|
|
{
|
|
char tbuf[30];
|
|
switch(a->a_type)
|
|
{
|
|
case A_SEMI: strcpy(buf, ";"); break;
|
|
case A_COMMA: strcpy(buf, ","); break;
|
|
#ifdef PD
|
|
case A_POINTER:
|
|
strcpy(buf, "(pointer)");
|
|
break;
|
|
#endif
|
|
case A_FLOAT:
|
|
sprintf(tbuf, "%g", a->a_w.w_float);
|
|
if (strlen(tbuf) < bufsize-1) strcpy(buf, tbuf);
|
|
else if (a->a_w.w_float < 0) strcpy(buf, "-");
|
|
else strcat(buf, "+");
|
|
break;
|
|
case A_LONG:
|
|
sprintf(tbuf, "%d", a->a_w.w_long);
|
|
if (strlen(tbuf) < bufsize-1) strcpy(buf, tbuf);
|
|
else if (a->a_w.w_float < 0) strcpy(buf, "-");
|
|
else strcat(buf, "+");
|
|
break;
|
|
case A_SYMBOL:
|
|
{
|
|
char *sp;
|
|
unsigned int len;
|
|
int quote;
|
|
for (sp = a->a_w.w_symbol->s_name, len = 0, quote = 0; *sp; sp++, len++)
|
|
if (*sp == ';' || *sp == ',' || *sp == '\\' ||
|
|
(*sp == '$' && sp == a->a_w.w_symbol->s_name && sp[1] >= '0'
|
|
&& sp[1] <= '9'))
|
|
quote = 1;
|
|
if (quote)
|
|
{
|
|
char *bp = buf, *ep = buf + (bufsize-2);
|
|
sp = a->a_w.w_symbol->s_name;
|
|
while (bp < ep && *sp)
|
|
{
|
|
if (*sp == ';' || *sp == ',' || *sp == '\\' ||
|
|
(*sp == '$' && bp == buf && sp[1] >= '0' && sp[1] <= '9'))
|
|
*bp++ = '\\';
|
|
*bp++ = *sp++;
|
|
}
|
|
if (*sp) *bp++ = '*';
|
|
*bp = 0;
|
|
/* post("quote %s -> %s", a->a_w.w_symbol->s_name, buf); */
|
|
}
|
|
else
|
|
{
|
|
if (len < bufsize-1) strcpy(buf, a->a_w.w_symbol->s_name);
|
|
else
|
|
{
|
|
strncpy(buf, a->a_w.w_symbol->s_name, bufsize - 2);
|
|
strcpy(buf + (bufsize - 2), "*");
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#ifdef PD
|
|
case A_DOLLAR:
|
|
sprintf(buf, "$%d", a->a_w.w_index);
|
|
break;
|
|
case A_DOLLSYM:
|
|
sprintf(buf, "$%s", a->a_w.w_symbol->s_name);
|
|
break;
|
|
#else /* MAX */
|
|
case A_DOLLAR:
|
|
sprintf(buf, "$%s", a->a_w.w_symbol->s_name);
|
|
break;
|
|
#endif
|
|
default:
|
|
post("atom_string bug");
|
|
}
|
|
}
|
|
#endif /* MSP */
|
|
/*
|
|
* expr_donew -- create a new "expr" object.
|
|
* returns 1 on failure, 0 on success.
|
|
*/
|
|
int
|
|
expr_donew(struct expr *expr, int ac, t_atom *av)
|
|
{
|
|
struct ex_ex *list;
|
|
struct ex_ex *ret;
|
|
long max_node = 0; /* maximum number of nodes needed */
|
|
char *exp_string;
|
|
int exp_strlen;
|
|
t_binbuf *b;
|
|
int i;
|
|
|
|
memset(expr->exp_var, 0, MAX_VARS * sizeof (*expr->exp_var));
|
|
#ifdef PD
|
|
b = binbuf_new();
|
|
binbuf_add(b, ac, av);
|
|
binbuf_gettext(b, &exp_string, &exp_strlen);
|
|
|
|
#else /* MSP */
|
|
{
|
|
char *buf = getbytes(0), *newbuf;
|
|
int length = 0;
|
|
char string[250];
|
|
t_atom *ap;
|
|
int indx;
|
|
|
|
for (ap = av, indx = 0; indx < ac; indx++, ap = ++av) {
|
|
int newlength;
|
|
if ((ap->a_type == A_SEMI || ap->a_type == A_COMMA) &&
|
|
length && buf[length-1] == ' ') length--;
|
|
atom_string(ap, string, 250);
|
|
newlength = length + strlen(string) + 1;
|
|
if (!(newbuf = t_resizebytes(buf, length, newlength))) break;
|
|
buf = newbuf;
|
|
strcpy(buf + length, string);
|
|
length = newlength;
|
|
if (ap->a_type == A_SEMI) buf[length-1] = '\n';
|
|
else buf[length-1] = ' ';
|
|
}
|
|
|
|
if (length && buf[length-1] == ' ') {
|
|
if (newbuf = t_resizebytes(buf, length, length-1))
|
|
{
|
|
buf = newbuf;
|
|
length--;
|
|
}
|
|
}
|
|
exp_string = buf;
|
|
exp_strlen = length;
|
|
}
|
|
#endif
|
|
exp_string = (char *)t_resizebytes(exp_string, exp_strlen,exp_strlen+1);
|
|
exp_string[exp_strlen] = 0;
|
|
expr->exp_string = exp_string;
|
|
expr->exp_str = exp_string;
|
|
expr->exp_nexpr = 0;
|
|
ret = (struct ex_ex *) 0;
|
|
/*
|
|
* if ret == 0 it means that we have no expression
|
|
* so we let the pass go through to build a single null stack
|
|
*/
|
|
while (*expr->exp_str || !ret) {
|
|
list = ex_lex(expr, &max_node);
|
|
if (!list) { /* syntax error */
|
|
goto error;
|
|
}
|
|
expr->exp_stack[expr->exp_nexpr] =
|
|
(struct ex_ex *)fts_malloc(max_node * sizeof (struct ex_ex));
|
|
expr->exp_nexpr++;
|
|
ret = ex_match(list, (long)0);
|
|
if (!ret) /* syntax error */
|
|
goto error;
|
|
ret = ex_parse(expr,
|
|
list, expr->exp_stack[expr->exp_nexpr - 1], (long *)0);
|
|
if (!ret)
|
|
goto error;
|
|
}
|
|
*ret = nullex;
|
|
t_freebytes(exp_string, exp_strlen+1);
|
|
return (0);
|
|
error:
|
|
for (i = 0; i < expr->exp_nexpr; i++) {
|
|
fts_free(expr->exp_stack[i]);
|
|
expr->exp_stack[i] = 0;
|
|
}
|
|
expr->exp_nexpr = 0;
|
|
if (list)
|
|
fts_free(list);
|
|
t_freebytes(exp_string, exp_strlen+1);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* ex_lex -- This routine is a bit more than a lexical parser since it will
|
|
* also do some syntax checking. It reads the string s and will
|
|
* return a linked list of struct ex_ex.
|
|
* It will also put the number of the nodes in *n.
|
|
*/
|
|
struct ex_ex *
|
|
ex_lex(struct expr *expr, long int *n)
|
|
{
|
|
struct ex_ex *list_arr;
|
|
struct ex_ex *exptr;
|
|
long non = 0; /* number of nodes */
|
|
long maxnode = 0;
|
|
|
|
list_arr = (struct ex_ex *)fts_malloc(sizeof (struct ex_ex) * MINODES);
|
|
if (! list_arr) {
|
|
post("ex_lex: no mem\n");
|
|
return ((struct ex_ex *)0);
|
|
}
|
|
exptr = list_arr;
|
|
maxnode = MINODES;
|
|
|
|
while (8)
|
|
{
|
|
if (non >= maxnode) {
|
|
maxnode += MINODES;
|
|
|
|
list_arr = fts_realloc((void *)list_arr,
|
|
sizeof (struct ex_ex) * maxnode);
|
|
if (!list_arr) {
|
|
post("ex_lex: no mem\n");
|
|
return ((struct ex_ex *)0);
|
|
}
|
|
exptr = &(list_arr)[non];
|
|
}
|
|
|
|
if (getoken(expr, exptr)) {
|
|
fts_free(list_arr);
|
|
return ((struct ex_ex *)0);
|
|
}
|
|
non++;
|
|
|
|
if (!exptr->ex_type)
|
|
break;
|
|
|
|
exptr++;
|
|
}
|
|
*n = non;
|
|
|
|
return list_arr;
|
|
}
|
|
|
|
/*
|
|
* ex_match -- this routine walks through the eptr and matches the
|
|
* perentheses and brackets, it also converts the function
|
|
* names to a pointer to the describing structure of the
|
|
* specified function
|
|
*/
|
|
/* operator to match */
|
|
struct ex_ex *
|
|
ex_match(struct ex_ex *eptr, long int op)
|
|
{
|
|
int firstone = 1;
|
|
struct ex_ex *ret;
|
|
t_ex_func *fun;
|
|
|
|
for (; 8; eptr++, firstone = 0) {
|
|
switch (eptr->ex_type) {
|
|
case 0:
|
|
if (!op)
|
|
return (eptr);
|
|
post("expr syntax error: an open %s not matched\n",
|
|
op == OP_RP ? "parenthesis" : "bracket");
|
|
return (exNULL);
|
|
case ET_INT:
|
|
case ET_FLT:
|
|
case ET_II:
|
|
case ET_FI:
|
|
case ET_SI:
|
|
case ET_VI:
|
|
case ET_SYM:
|
|
case ET_VSYM:
|
|
continue;
|
|
case ET_YO:
|
|
if (eptr[1].ex_type != ET_OP || eptr[1].ex_op != OP_LB)
|
|
eptr->ex_type = ET_YOM1;
|
|
continue;
|
|
case ET_XI:
|
|
if (eptr[1].ex_type != ET_OP || eptr[1].ex_op != OP_LB)
|
|
eptr->ex_type = ET_XI0;
|
|
continue;
|
|
case ET_TBL:
|
|
case ET_FUNC:
|
|
case ET_LP:
|
|
/* CHANGE
|
|
case ET_RP:
|
|
*/
|
|
case ET_LB:
|
|
/* CHANGE
|
|
case ET_RB:
|
|
*/
|
|
post("ex_match: unexpected type, %ld\n", eptr->ex_type);
|
|
return (exNULL);
|
|
case ET_OP:
|
|
if (op == eptr->ex_op)
|
|
return (eptr);
|
|
/*
|
|
* if we are looking for a right peranthesis
|
|
* or a right bracket and find the other kind,
|
|
* it has to be a syntax error
|
|
*/
|
|
if ((eptr->ex_op == OP_RP && op == OP_RB) ||
|
|
(eptr->ex_op == OP_RB && op == OP_RP)) {
|
|
post("expr syntax error: prenthesis or brackets not matched\n");
|
|
return (exNULL);
|
|
}
|
|
/*
|
|
* Up to now we have marked the unary minuses as
|
|
* subrtacts. Any minus that is the first one in
|
|
* chain or is preceeded by anything except ')' and
|
|
* ']' is a unary minus.
|
|
*/
|
|
if (eptr->ex_op == OP_SUB) {
|
|
ret = eptr - 1;
|
|
if (firstone || (ret->ex_type == ET_OP &&
|
|
ret->ex_op != OP_RB && ret->ex_op != OP_RP))
|
|
eptr->ex_op = OP_UMINUS;
|
|
} else if (eptr->ex_op == OP_LP) {
|
|
ret = ex_match(eptr + 1, OP_RP);
|
|
if (!ret)
|
|
return (ret);
|
|
eptr->ex_type = ET_LP;
|
|
eptr->ex_ptr = (char *) ret;
|
|
eptr = ret;
|
|
} else if (eptr->ex_op == OP_LB) {
|
|
ret = ex_match(eptr + 1, OP_RB);
|
|
if (!ret)
|
|
return (ret);
|
|
eptr->ex_type = ET_LB;
|
|
eptr->ex_ptr = (char *) ret;
|
|
eptr = ret;
|
|
}
|
|
continue;
|
|
case ET_STR:
|
|
if (eptr[1].ex_op == OP_LB) {
|
|
char *tmp;
|
|
|
|
eptr->ex_type = ET_TBL;
|
|
tmp = eptr->ex_ptr;
|
|
if (ex_getsym(tmp, (t_symbol **)&(eptr->ex_ptr))) {
|
|
post("expr: syntax error: problms with ex_getsym\n");
|
|
return (exNULL);
|
|
}
|
|
fts_free((void *)tmp);
|
|
} else if (eptr[1].ex_op == OP_LP) {
|
|
fun = find_func(eptr->ex_ptr);
|
|
if (!fun) {
|
|
post(
|
|
"expr: error: function %s not found\n",
|
|
eptr->ex_ptr);
|
|
return (exNULL);
|
|
}
|
|
eptr->ex_type = ET_FUNC;
|
|
eptr->ex_ptr = (char *) fun;
|
|
} else {
|
|
char *tmp;
|
|
|
|
if (eptr[1].ex_type && eptr[1].ex_type!=ET_OP){
|
|
post("expr: syntax error: bad string '%s'\n", eptr->ex_ptr);
|
|
return (exNULL);
|
|
}
|
|
/* it is a variable */
|
|
eptr->ex_type = ET_VAR;
|
|
tmp = eptr->ex_ptr;
|
|
if (ex_getsym(tmp,
|
|
(t_symbol **)&(eptr->ex_ptr))) {
|
|
post("expr: variable '%s' not found",tmp);
|
|
return (exNULL);
|
|
}
|
|
}
|
|
continue;
|
|
default:
|
|
post("ex_match: bad type\n");
|
|
return (exNULL);
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* ex_parse -- This function if called when we have already done some
|
|
* parsing on the expression, and we have already matched
|
|
* our brackets and parenthesis. The main job of this
|
|
* function is to convert the infix expression to the
|
|
* prefix form.
|
|
* First we find the operator with the lowest precedence and
|
|
* put it on the stack ('optr', it is really just an array), then
|
|
* we call ourself (ex_parse()), on its arguments (unary operators
|
|
* only have one operator.)
|
|
* When "argc" is set it means that we are parsing the arguments
|
|
* of a function and we will increment *argc anytime we find
|
|
* a a segment that can qualify as an argument (counting commas).
|
|
*
|
|
* returns 0 on syntax error
|
|
*/
|
|
/* number of argument separated by comma */
|
|
struct ex_ex *
|
|
ex_parse(struct expr *x, struct ex_ex *iptr, struct ex_ex *optr, long int *argc)
|
|
{
|
|
struct ex_ex *eptr;
|
|
struct ex_ex *lowpre = 0; /* pointer to the lowest precedence */
|
|
struct ex_ex savex;
|
|
long pre = HI_PRE;
|
|
long count;
|
|
|
|
if (!iptr) {
|
|
post("ex_parse: input is null, iptr = 0x%lx\n", iptr);
|
|
return (exNULL);
|
|
}
|
|
if (!iptr->ex_type)
|
|
return (exNULL);
|
|
|
|
/*
|
|
* the following loop finds the lowest precedence operator in the
|
|
* the input token list, comma is explicitly checked here since
|
|
* that is a special operator and is only legal in functions
|
|
*/
|
|
for (eptr = iptr, count = 0; eptr->ex_type; eptr++, count++)
|
|
switch (eptr->ex_type) {
|
|
case ET_SYM:
|
|
case ET_VSYM:
|
|
if (!argc) {
|
|
post("expr: syntax error: symbols allowed for functions only\n");
|
|
ex_print(eptr);
|
|
return (exNULL);
|
|
}
|
|
case ET_INT:
|
|
case ET_FLT:
|
|
case ET_II:
|
|
case ET_FI:
|
|
case ET_XI0:
|
|
case ET_YOM1:
|
|
case ET_VI:
|
|
case ET_VAR:
|
|
if (!count && !eptr[1].ex_type) {
|
|
*optr++ = *eptr;
|
|
return (optr);
|
|
}
|
|
break;
|
|
case ET_XI:
|
|
case ET_YO:
|
|
case ET_SI:
|
|
case ET_TBL:
|
|
if (eptr[1].ex_type != ET_LB) {
|
|
post("expr: syntax error: brackets missing\n");
|
|
ex_print(eptr);
|
|
return (exNULL);
|
|
}
|
|
/* if this table is the only token, parse the table */
|
|
if (!count &&
|
|
!((struct ex_ex *) eptr[1].ex_ptr)[1].ex_type) {
|
|
savex = *((struct ex_ex *) eptr[1].ex_ptr);
|
|
*((struct ex_ex *) eptr[1].ex_ptr) = nullex;
|
|
*optr++ = *eptr;
|
|
lowpre = ex_parse(x, &eptr[2], optr, (long *)0);
|
|
*((struct ex_ex *) eptr[1].ex_ptr) = savex;
|
|
return(lowpre);
|
|
}
|
|
eptr = (struct ex_ex *) eptr[1].ex_ptr;
|
|
break;
|
|
case ET_OP:
|
|
if (eptr->ex_op == OP_COMMA) {
|
|
if (!argc || !count || !eptr[1].ex_type) {
|
|
post("expr: syntax error: illegal comma\n");
|
|
ex_print(eptr[1].ex_type ? eptr : iptr);
|
|
return (exNULL);
|
|
}
|
|
}
|
|
if (!eptr[1].ex_type) {
|
|
post("expr: syntax error: missing operand\n");
|
|
ex_print(iptr);
|
|
return (exNULL);
|
|
}
|
|
if ((eptr->ex_op & PRE_MASK) <= pre) {
|
|
pre = eptr->ex_op & PRE_MASK;
|
|
lowpre = eptr;
|
|
}
|
|
break;
|
|
case ET_FUNC:
|
|
if (eptr[1].ex_type != ET_LP) {
|
|
post("expr: ex_parse: no parenthesis\n");
|
|
return (exNULL);
|
|
}
|
|
/* if this function is the only token, parse it */
|
|
if (!count &&
|
|
!((struct ex_ex *) eptr[1].ex_ptr)[1].ex_type) {
|
|
long ac;
|
|
|
|
if (eptr[1].ex_ptr == (char *) &eptr[2]) {
|
|
post("expr: syntax error: missing argument\n");
|
|
ex_print(eptr);
|
|
return (exNULL);
|
|
}
|
|
ac = 0;
|
|
savex = *((struct ex_ex *) eptr[1].ex_ptr);
|
|
*((struct ex_ex *) eptr[1].ex_ptr) = nullex;
|
|
*optr++ = *eptr;
|
|
lowpre = ex_parse(x, &eptr[2], optr, &ac);
|
|
if (!lowpre)
|
|
return (exNULL);
|
|
ac++;
|
|
if (ac !=
|
|
((t_ex_func *)eptr->ex_ptr)->f_argc){
|
|
post("expr: syntax error: function '%s' needs %ld arguments\n",
|
|
((t_ex_func *)eptr->ex_ptr)->f_name,
|
|
((t_ex_func *)eptr->ex_ptr)->f_argc);
|
|
return (exNULL);
|
|
}
|
|
*((struct ex_ex *) eptr[1].ex_ptr) = savex;
|
|
return (lowpre);
|
|
}
|
|
eptr = (struct ex_ex *) eptr[1].ex_ptr;
|
|
break;
|
|
case ET_LP:
|
|
case ET_LB:
|
|
if (!count &&
|
|
!((struct ex_ex *) eptr->ex_ptr)[1].ex_type) {
|
|
if (eptr->ex_ptr == (char *)(&eptr[1])) {
|
|
post("expr: syntax error: empty '%s'\n",
|
|
eptr->ex_type==ET_LP?"()":"[]");
|
|
ex_print(eptr);
|
|
return (exNULL);
|
|
}
|
|
savex = *((struct ex_ex *) eptr->ex_ptr);
|
|
*((struct ex_ex *) eptr->ex_ptr) = nullex;
|
|
lowpre = ex_parse(x, &eptr[1], optr, (long *)0);
|
|
*((struct ex_ex *) eptr->ex_ptr) = savex;
|
|
return (lowpre);
|
|
}
|
|
eptr = (struct ex_ex *)eptr->ex_ptr;
|
|
break;
|
|
case ET_STR:
|
|
default:
|
|
ex_print(eptr);
|
|
post("expr: ex_parse: type = 0x%lx\n", eptr->ex_type);
|
|
return (exNULL);
|
|
}
|
|
|
|
if (pre == HI_PRE) {
|
|
post("expr: syntax error: missing operation\n");
|
|
ex_print(iptr);
|
|
return (exNULL);
|
|
}
|
|
if (count < 2) {
|
|
post("expr: syntax error: mission operand\n");
|
|
ex_print(iptr);
|
|
return (exNULL);
|
|
}
|
|
if (count == 2) {
|
|
if (lowpre != iptr) {
|
|
post("expr: ex_parse: unary operator should be first\n");
|
|
return (exNULL);
|
|
}
|
|
if (!unary_op(lowpre->ex_op)) {
|
|
post("expr: syntax error: not a uniary operator\n");
|
|
ex_print(iptr);
|
|
return (exNULL);
|
|
}
|
|
*optr++ = *lowpre;
|
|
eptr = ex_parse(x, &lowpre[1], optr, argc);
|
|
return (eptr);
|
|
}
|
|
if (lowpre == iptr) {
|
|
post("expr: syntax error: mission operand\n");
|
|
ex_print(iptr);
|
|
return (exNULL);
|
|
}
|
|
savex = *lowpre;
|
|
*lowpre = nullex;
|
|
if (savex.ex_op != OP_COMMA)
|
|
*optr++ = savex;
|
|
else
|
|
(*argc)++;
|
|
eptr = ex_parse(x, iptr, optr, argc);
|
|
if (eptr) {
|
|
eptr = ex_parse(x, &lowpre[1], eptr, argc);
|
|
*lowpre = savex;
|
|
}
|
|
return (eptr);
|
|
}
|
|
|
|
/*
|
|
* this is the devide zero check for a a non devide operator
|
|
*/
|
|
#define DZC(ARG1,OPR,ARG2) (ARG1 OPR ARG2)
|
|
|
|
#define EVAL(OPR); \
|
|
eptr = ex_eval(expr, ex_eval(expr, eptr, &left, idx), &right, idx); \
|
|
switch (left.ex_type) { \
|
|
case ET_INT: \
|
|
switch(right.ex_type) { \
|
|
case ET_INT: \
|
|
if (optr->ex_type == ET_VEC) { \
|
|
op = optr->ex_vec; \
|
|
scalar = (t_float)DZC(left.ex_int, OPR, right.ex_int); \
|
|
for (j = 0; j < expr->exp_vsize; j++) \
|
|
*op++ = scalar; \
|
|
} else { \
|
|
optr->ex_type = ET_INT; \
|
|
optr->ex_int = DZC(left.ex_int, OPR, right.ex_int); \
|
|
} \
|
|
break; \
|
|
case ET_FLT: \
|
|
if (optr->ex_type == ET_VEC) { \
|
|
op = optr->ex_vec; \
|
|
scalar = DZC(((t_float)left.ex_int), OPR, right.ex_flt);\
|
|
for (j = 0; j < expr->exp_vsize; j++) \
|
|
*op++ = scalar; \
|
|
} else { \
|
|
optr->ex_type = ET_FLT; \
|
|
optr->ex_flt = DZC(((t_float)left.ex_int), OPR, \
|
|
right.ex_flt); \
|
|
} \
|
|
break; \
|
|
case ET_VEC: \
|
|
case ET_VI: \
|
|
if (optr->ex_type != ET_VEC) { \
|
|
if (optr->ex_type == ET_VI) { \
|
|
post("expr~: Int. error %d", __LINE__); \
|
|
abort(); \
|
|
} \
|
|
optr->ex_type = ET_VEC; \
|
|
optr->ex_vec = (t_float *) \
|
|
fts_malloc(sizeof (t_float)*expr->exp_vsize); \
|
|
} \
|
|
scalar = left.ex_int; \
|
|
rp = right.ex_vec; \
|
|
op = optr->ex_vec; \
|
|
for (i = 0; i < expr->exp_vsize; i++) { \
|
|
*op++ = DZC (scalar, OPR, *rp); \
|
|
rp++; \
|
|
} \
|
|
break; \
|
|
case ET_SYM: \
|
|
default: \
|
|
post_error((fts_object_t *) expr, \
|
|
"expr: ex_eval(%d): bad right type %ld\n", \
|
|
__LINE__, right.ex_type); \
|
|
nullret = 1; \
|
|
} \
|
|
break; \
|
|
case ET_FLT: \
|
|
switch(right.ex_type) { \
|
|
case ET_INT: \
|
|
if (optr->ex_type == ET_VEC) { \
|
|
op = optr->ex_vec; \
|
|
scalar = DZC((t_float) left.ex_flt, OPR, right.ex_int); \
|
|
for (j = 0; j < expr->exp_vsize; j++) \
|
|
*op++ = scalar; \
|
|
} else { \
|
|
optr->ex_type = ET_FLT; \
|
|
optr->ex_flt = DZC(left.ex_flt, OPR, right.ex_int); \
|
|
} \
|
|
break; \
|
|
case ET_FLT: \
|
|
if (optr->ex_type == ET_VEC) { \
|
|
op = optr->ex_vec; \
|
|
scalar = DZC(left.ex_flt, OPR, right.ex_flt); \
|
|
for (j = 0; j < expr->exp_vsize; j++) \
|
|
*op++ = scalar; \
|
|
} else { \
|
|
optr->ex_type = ET_FLT; \
|
|
optr->ex_flt= DZC(left.ex_flt, OPR, right.ex_flt); \
|
|
} \
|
|
break; \
|
|
case ET_VEC: \
|
|
case ET_VI: \
|
|
if (optr->ex_type != ET_VEC) { \
|
|
if (optr->ex_type == ET_VI) { \
|
|
post("expr~: Int. error %d", __LINE__); \
|
|
abort(); \
|
|
} \
|
|
optr->ex_type = ET_VEC; \
|
|
optr->ex_vec = (t_float *) \
|
|
fts_malloc(sizeof (t_float)*expr->exp_vsize); \
|
|
} \
|
|
scalar = left.ex_flt; \
|
|
rp = right.ex_vec; \
|
|
op = optr->ex_vec; \
|
|
for (i = 0; i < expr->exp_vsize; i++) { \
|
|
*op++ = DZC(scalar, OPR, *rp); \
|
|
rp++; \
|
|
} \
|
|
break; \
|
|
case ET_SYM: \
|
|
default: \
|
|
post_error((fts_object_t *) expr, \
|
|
"expr: ex_eval(%d): bad right type %ld\n", \
|
|
__LINE__, right.ex_type); \
|
|
nullret = 1; \
|
|
} \
|
|
break; \
|
|
case ET_VEC: \
|
|
case ET_VI: \
|
|
if (optr->ex_type != ET_VEC) { \
|
|
if (optr->ex_type == ET_VI) { \
|
|
post("expr~: Int. error %d", __LINE__); \
|
|
abort(); \
|
|
} \
|
|
optr->ex_type = ET_VEC; \
|
|
optr->ex_vec = (t_float *) \
|
|
fts_malloc(sizeof (t_float)*expr->exp_vsize); \
|
|
} \
|
|
op = optr->ex_vec; \
|
|
lp = left.ex_vec; \
|
|
switch(right.ex_type) { \
|
|
case ET_INT: \
|
|
scalar = right.ex_int; \
|
|
for (i = 0; i < expr->exp_vsize; i++) { \
|
|
*op++ = DZC(*lp, OPR, scalar); \
|
|
lp++; \
|
|
} \
|
|
break; \
|
|
case ET_FLT: \
|
|
scalar = right.ex_flt; \
|
|
for (i = 0; i < expr->exp_vsize; i++) { \
|
|
*op++ = DZC(*lp, OPR, scalar); \
|
|
lp++; \
|
|
} \
|
|
break; \
|
|
case ET_VEC: \
|
|
case ET_VI: \
|
|
rp = right.ex_vec; \
|
|
for (i = 0; i < expr->exp_vsize; i++) { \
|
|
/* \
|
|
* on a RISC processor one could copy \
|
|
* 8 times in each round to get a considerable \
|
|
* improvement \
|
|
*/ \
|
|
*op++ = DZC(*lp, OPR, *rp); \
|
|
rp++; lp++; \
|
|
} \
|
|
break; \
|
|
case ET_SYM: \
|
|
default: \
|
|
post_error((fts_object_t *) expr, \
|
|
"expr: ex_eval(%d): bad right type %ld\n", \
|
|
__LINE__, right.ex_type); \
|
|
nullret = 1; \
|
|
} \
|
|
break; \
|
|
case ET_SYM: \
|
|
default: \
|
|
post_error((fts_object_t *) expr, \
|
|
"expr: ex_eval(%d): bad left type %ld\n", \
|
|
__LINE__, left.ex_type); \
|
|
} \
|
|
break;
|
|
|
|
/*
|
|
* evaluate a unary operator, TYPE is applied to float operands
|
|
*/
|
|
#define EVAL_UNARY(OPR, TYPE) \
|
|
eptr = ex_eval(expr, eptr, &left, idx); \
|
|
switch(left.ex_type) { \
|
|
case ET_INT: \
|
|
if (optr->ex_type == ET_VEC) { \
|
|
ex_mkvector(optr->ex_vec,(t_float)(OPR left.ex_int),\
|
|
expr->exp_vsize);\
|
|
break; \
|
|
} \
|
|
optr->ex_type = ET_INT; \
|
|
optr->ex_int = OPR left.ex_int; \
|
|
break; \
|
|
case ET_FLT: \
|
|
if (optr->ex_type == ET_VEC) { \
|
|
ex_mkvector(optr->ex_vec, OPR (TYPE left.ex_flt),\
|
|
expr->exp_vsize);\
|
|
break; \
|
|
} \
|
|
optr->ex_type = ET_FLT; \
|
|
optr->ex_flt = OPR (TYPE left.ex_flt); \
|
|
break; \
|
|
case ET_VI: \
|
|
case ET_VEC: \
|
|
j = expr->exp_vsize; \
|
|
if (optr->ex_type != ET_VEC) { \
|
|
optr->ex_type = ET_VEC; \
|
|
optr->ex_vec = (t_float *) \
|
|
fts_malloc(sizeof (t_float)*expr->exp_vsize); \
|
|
} \
|
|
op = optr->ex_vec; \
|
|
lp = left.ex_vec; \
|
|
j = expr->exp_vsize; \
|
|
for (i = 0; i < j; i++) \
|
|
*op++ = OPR (TYPE *lp++); \
|
|
break; \
|
|
default: \
|
|
post_error((fts_object_t *) expr, \
|
|
"expr: ex_eval(%d): bad left type %ld\n", \
|
|
__LINE__, left.ex_type); \
|
|
nullret++; \
|
|
} \
|
|
break;
|
|
|
|
void
|
|
ex_mkvector(t_float *fp, t_float x, int size)
|
|
{
|
|
while (size--)
|
|
*fp++ = x;
|
|
}
|
|
|
|
/*
|
|
* ex_dzdetect -- divide by zero detected
|
|
*/
|
|
void
|
|
ex_dzdetect(struct expr *expr)
|
|
{
|
|
char *etype;
|
|
|
|
if (!expr->exp_error & EE_DZ) {
|
|
if (IS_EXPR(expr))
|
|
etype = "expr";
|
|
else if (IS_EXPR_TILDE(expr))
|
|
etype = "expr~";
|
|
else if (IS_FEXPR_TILDE(expr))
|
|
etype = "fexpr~";
|
|
else {
|
|
post ("expr -- ex_dzdetect internal error");
|
|
etype = "";
|
|
}
|
|
post ("%s divide by zero detected", etype);
|
|
expr->exp_error |= EE_DZ;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ex_eval -- evaluate the array of prefix expression
|
|
* ex_eval returns the pointer to the first unevaluated node
|
|
* in the array. This is a recursive routine.
|
|
*/
|
|
|
|
/* SDY
|
|
all the returns in this function need to be changed so that the code
|
|
ends up at the end to check for newly allocated right and left vectors which
|
|
need to be freed
|
|
|
|
look into the variable nullret
|
|
*/
|
|
struct ex_ex *
|
|
ex_eval(struct expr *expr, struct ex_ex *eptr, struct ex_ex *optr, int idx)
|
|
/* the expr object data pointer */
|
|
/* the operation stack */
|
|
/* the result pointer */
|
|
/* the sample numnber processed for fexpr~ */
|
|
{
|
|
int i, j;
|
|
t_float *lp, *rp, *op; /* left, right, and out pointer to vectors */
|
|
t_float scalar;
|
|
int nullret = 0; /* did we have an error */
|
|
struct ex_ex left, right; /* left and right operands */
|
|
|
|
left.ex_type = 0;
|
|
left.ex_int = 0;
|
|
right.ex_type = 0;
|
|
right.ex_int = 0;
|
|
|
|
if (!eptr)
|
|
return (exNULL);
|
|
switch (eptr->ex_type) {
|
|
case ET_INT:
|
|
if (optr->ex_type == ET_VEC)
|
|
ex_mkvector(optr->ex_vec, (t_float) eptr->ex_int,
|
|
expr->exp_vsize);
|
|
else
|
|
*optr = *eptr;
|
|
return (++eptr);
|
|
|
|
case ET_FLT:
|
|
|
|
if (optr->ex_type == ET_VEC)
|
|
ex_mkvector(optr->ex_vec, eptr->ex_flt, expr->exp_vsize);
|
|
else
|
|
*optr = *eptr;
|
|
return (++eptr);
|
|
|
|
case ET_SYM:
|
|
if (optr->ex_type == ET_VEC) {
|
|
post_error((fts_object_t *) expr,
|
|
"expr: ex_eval: cannot turn string to vector\n");
|
|
return (exNULL);
|
|
}
|
|
*optr = *eptr;
|
|
return (++eptr);
|
|
case ET_II:
|
|
if (eptr->ex_int == -1) {
|
|
post_error((fts_object_t *) expr,
|
|
"expr: ex_eval: inlet number not set\n");
|
|
return (exNULL);
|
|
}
|
|
if (optr->ex_type == ET_VEC) {
|
|
ex_mkvector(optr->ex_vec,
|
|
(t_float)expr->exp_var[eptr->ex_int].ex_int,
|
|
expr->exp_vsize);
|
|
} else {
|
|
optr->ex_type = ET_INT;
|
|
optr->ex_int = expr->exp_var[eptr->ex_int].ex_int;
|
|
}
|
|
return (++eptr);
|
|
case ET_FI:
|
|
if (eptr->ex_int == -1) {
|
|
post_error((fts_object_t *) expr,
|
|
"expr: ex_eval: inlet number not set\n");
|
|
return (exNULL);
|
|
}
|
|
if (optr->ex_type == ET_VEC) {
|
|
ex_mkvector(optr->ex_vec,
|
|
expr->exp_var[eptr->ex_int].ex_flt, expr->exp_vsize);
|
|
} else {
|
|
optr->ex_type = ET_FLT;
|
|
optr->ex_flt = expr->exp_var[eptr->ex_int].ex_flt;
|
|
}
|
|
return (++eptr);
|
|
|
|
case ET_VSYM:
|
|
if (optr->ex_type == ET_VEC) {
|
|
post_error((fts_object_t *) expr,
|
|
"expr: IntErr. vsym in for vec out\n");
|
|
return (exNULL);
|
|
}
|
|
if (eptr->ex_int == -1) {
|
|
post_error((fts_object_t *) expr,
|
|
"expr: ex_eval: inlet number not set\n");
|
|
return (exNULL);
|
|
}
|
|
optr->ex_type = ET_SYM;
|
|
optr->ex_ptr = expr->exp_var[eptr->ex_int].ex_ptr;
|
|
return(++eptr);
|
|
|
|
case ET_VI:
|
|
if (optr->ex_type != ET_VEC)
|
|
*optr = expr->exp_var[eptr->ex_int];
|
|
else if (optr->ex_vec != expr->exp_var[eptr->ex_int].ex_vec)
|
|
memcpy(optr->ex_vec, expr->exp_var[eptr->ex_int].ex_vec,
|
|
expr->exp_vsize * sizeof (t_float));
|
|
return(++eptr);
|
|
case ET_VEC:
|
|
if (optr->ex_type != ET_VEC) {
|
|
optr->ex_type = ET_VEC;
|
|
optr->ex_vec = eptr->ex_vec;
|
|
eptr->ex_type = ET_INT;
|
|
eptr->ex_int = 0;
|
|
} else if (optr->ex_vec != eptr->ex_vec) {
|
|
memcpy(optr->ex_vec, eptr->ex_vec,
|
|
expr->exp_vsize * sizeof (t_float));
|
|
/* do we need to free here? or can we free higher up */
|
|
/* SDY the next lines do not make sense */
|
|
post("calling fts_free\n");
|
|
abort();
|
|
fts_free(optr->ex_vec);
|
|
optr->ex_type = ET_INT;
|
|
eptr->ex_int = 0;
|
|
} else { /* this should not happen */
|
|
post("expr int. error, optr->ex_vec = %d",optr->ex_vec);
|
|
abort();
|
|
}
|
|
return(++eptr);
|
|
case ET_XI0:
|
|
/* short hand for $x?[0] */
|
|
|
|
/* SDY delete the following check */
|
|
if (!IS_FEXPR_TILDE(expr) || optr->ex_type==ET_VEC) {
|
|
post("%d:exp->exp_flags = %d", __LINE__,expr->exp_flags);
|
|
abort();
|
|
}
|
|
optr->ex_type = ET_FLT;
|
|
optr->ex_flt = expr->exp_var[eptr->ex_int].ex_vec[idx];
|
|
return(++eptr);
|
|
case ET_YOM1:
|
|
/*
|
|
* short hand for $y?[-1]
|
|
* if we are calculating the first sample of the vector
|
|
* we need to look at the previous results buffer
|
|
*/
|
|
optr->ex_type = ET_FLT;
|
|
if (idx == 0)
|
|
optr->ex_flt =
|
|
expr->exp_p_res[eptr->ex_int][expr->exp_vsize - 1];
|
|
else
|
|
optr->ex_flt=expr->exp_tmpres[eptr->ex_int][idx-1];
|
|
return(++eptr);
|
|
|
|
case ET_YO:
|
|
case ET_XI:
|
|
/* SDY delete the following */
|
|
if (!IS_FEXPR_TILDE(expr) || optr->ex_type==ET_VEC) {
|
|
post("%d:expr->exp_flags = %d", __LINE__,expr->exp_flags);
|
|
abort();
|
|
}
|
|
return (eval_sigidx(expr, eptr, optr, idx));
|
|
|
|
case ET_TBL:
|
|
case ET_SI:
|
|
return (eval_tab(expr, eptr, optr, idx));
|
|
case ET_FUNC:
|
|
return (eval_func(expr, eptr, optr, idx));
|
|
case ET_VAR:
|
|
return (eval_var(expr, eptr, optr, idx));
|
|
case ET_OP:
|
|
break;
|
|
case ET_STR:
|
|
case ET_LP:
|
|
case ET_LB:
|
|
default:
|
|
post_error((fts_object_t *) expr,
|
|
"expr: ex_eval: unexpected type %d\n", eptr->ex_type);
|
|
return (exNULL);
|
|
}
|
|
if (!eptr[1].ex_type) {
|
|
post_error((fts_object_t *) expr,
|
|
"expr: ex_eval: not enough nodes 1\n");
|
|
return (exNULL);
|
|
}
|
|
if (!unary_op(eptr->ex_op) && !eptr[2].ex_type) {
|
|
post_error((fts_object_t *) expr,
|
|
"expr: ex_eval: not enough nodes 2\n");
|
|
return (exNULL);
|
|
}
|
|
|
|
switch((eptr++)->ex_op) {
|
|
case OP_STORE:
|
|
return (eval_store(expr, eptr, optr, idx));
|
|
case OP_NOT:
|
|
EVAL_UNARY(!, +);
|
|
case OP_NEG:
|
|
EVAL_UNARY(~, (long));
|
|
case OP_UMINUS:
|
|
EVAL_UNARY(-, +);
|
|
case OP_MUL:
|
|
EVAL(*);
|
|
case OP_ADD:
|
|
EVAL(+);
|
|
case OP_SUB:
|
|
EVAL(-);
|
|
case OP_LT:
|
|
EVAL(<);
|
|
case OP_LE:
|
|
EVAL(<=);
|
|
case OP_GT:
|
|
EVAL(>);
|
|
case OP_GE:
|
|
EVAL(>=);
|
|
case OP_EQ:
|
|
EVAL(==);
|
|
case OP_NE:
|
|
EVAL(!=);
|
|
/*
|
|
* following operators convert their argument to integer
|
|
*/
|
|
#undef DZC
|
|
#define DZC(ARG1,OPR,ARG2) (((int)ARG1) OPR ((int)ARG2))
|
|
case OP_SL:
|
|
EVAL(<<);
|
|
case OP_SR:
|
|
EVAL(>>);
|
|
case OP_AND:
|
|
EVAL(&);
|
|
case OP_XOR:
|
|
EVAL(^);
|
|
case OP_OR:
|
|
EVAL(|);
|
|
case OP_LAND:
|
|
EVAL(&&);
|
|
case OP_LOR:
|
|
EVAL(||);
|
|
/*
|
|
* for modulo we need to convert to integer and check for divide by zero
|
|
*/
|
|
#undef DZC
|
|
#define DZC(ARG1,OPR,ARG2) (((ARG2)?(((int)ARG1) OPR ((int)ARG2)) \
|
|
: (ex_dzdetect(expr),0)))
|
|
case OP_MOD:
|
|
EVAL(%);
|
|
/*
|
|
* define the divide by zero check for divide
|
|
*/
|
|
#undef DZC
|
|
#define DZC(ARG1,OPR,ARG2) (((ARG2)?(ARG1 OPR ARG2):(ex_dzdetect(expr),0)))
|
|
case OP_DIV:
|
|
EVAL(/);
|
|
case OP_LP:
|
|
case OP_RP:
|
|
case OP_LB:
|
|
case OP_RB:
|
|
case OP_COMMA:
|
|
case OP_SEMI:
|
|
default:
|
|
post_error((fts_object_t *) expr, "expr: ex_print: bad op 0x%x\n", eptr->ex_op);
|
|
return (exNULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* the left and right nodes could have been transformed to vectors
|
|
* down the chain
|
|
*/
|
|
if (left.ex_type == ET_VEC)
|
|
fts_free(left.ex_vec);
|
|
if (right.ex_type == ET_VEC)
|
|
fts_free(right.ex_vec);
|
|
if (nullret)
|
|
return (exNULL);
|
|
else
|
|
return (eptr);
|
|
}
|
|
|
|
/*
|
|
* eval_func -- evaluate a function, call ex_eval() on all the arguments
|
|
* so that all of them are terminal nodes. The call the
|
|
* appropriate function
|
|
*/
|
|
struct ex_ex *
|
|
eval_func(struct expr *expr, struct ex_ex *eptr, struct ex_ex *optr, int idx)
|
|
/* the expr object data pointer */
|
|
/* the operation stack */
|
|
/* the result pointer */
|
|
{
|
|
int i;
|
|
struct ex_ex args[MAX_ARGS];
|
|
t_ex_func *f;
|
|
|
|
f = (t_ex_func *)(eptr++)->ex_ptr;
|
|
if (!f || !f->f_name) {
|
|
return (exNULL);
|
|
}
|
|
if (f->f_argc > MAX_ARGS) {
|
|
post_error((fts_object_t *) expr, "expr: eval_func: asking too many arguments\n");
|
|
return (exNULL);
|
|
}
|
|
|
|
for (i = 0; i < f->f_argc; i++) {
|
|
args[i].ex_type = 0;
|
|
args[i].ex_int = 0;
|
|
eptr = ex_eval(expr, eptr, &args[i], idx);
|
|
}
|
|
(*f->f_func)(expr, f->f_argc, args, optr);
|
|
for (i = 0; i < f->f_argc; i++) {
|
|
if (args[i].ex_type == ET_VEC)
|
|
fts_free(args[i].ex_vec);
|
|
}
|
|
return (eptr);
|
|
}
|
|
|
|
|
|
/*
|
|
* eval_store -- evaluate the '=' operator,
|
|
* make sure the first operator is a legal left operator
|
|
* and call ex_eval on the right operator
|
|
*/
|
|
struct ex_ex *
|
|
eval_store(struct expr *expr, struct ex_ex *eptr, struct ex_ex *optr, int idx)
|
|
/* the expr object data pointer */
|
|
/* the operation stack */
|
|
/* the result pointer */
|
|
{
|
|
struct ex_ex arg;
|
|
int isvalue;
|
|
char *tbl = (char *) 0;
|
|
char *var = (char *) 0;
|
|
int badleft = 0;
|
|
|
|
post("store called\n");
|
|
ex_print(eptr);
|
|
eptr = ex_eval(expr, ++eptr, optr, idx);
|
|
return (eptr);
|
|
|
|
#ifdef notdef /* SDY */
|
|
arg.ex_type = ET_INT;
|
|
arg.ex_int = 0;
|
|
if (eptr->ex_type == ET_VAR) {
|
|
var = (char *) eptr->ex_ptr;
|
|
|
|
eptr = ex_eval(expr, ++eptr, &arg, idx);
|
|
(void)max_ex_var_store(expr, (t_symbol *)var, &arg, optr);
|
|
if (arg.ex_type == ET_VEC)
|
|
fts_free(arg.ex_vec);
|
|
}
|
|
|
|
|
|
if (eptr->ex_type == ET_SI) {
|
|
eptr++;
|
|
if (eptr->ex_type =
|
|
}
|
|
|
|
/* the left operator should either be a value or a array member */
|
|
switch (eptr->ex_type) {
|
|
case ET_SI:
|
|
if ((eptr + 1)->ex_type == OP_LB) {
|
|
}
|
|
if (!expr->exp_var[eptr->ex_int].ex_ptr) {
|
|
if (!(expr->exp_error & EE_NOTABLE)) {
|
|
post("expr: syntax error: no string for inlet %d", eptr->ex_int + 1);
|
|
post("expr: No more table errors will be reported");
|
|
post("expr: till the next reset");
|
|
expr->exp_error |= EE_NOTABLE;
|
|
}
|
|
badleft++;
|
|
} else
|
|
tbl = (char *) expr->exp_var[eptr->ex_int].ex_ptr;
|
|
break;
|
|
case ET_TBL:
|
|
}
|
|
#endif /* SDY */
|
|
}
|
|
|
|
/*
|
|
* eval_tab -- evaluate a table operation
|
|
*/
|
|
struct ex_ex *
|
|
eval_tab(struct expr *expr, struct ex_ex *eptr, struct ex_ex *optr, int idx)
|
|
/* the expr object data pointer */
|
|
/* the operation stack */
|
|
/* the result pointer */
|
|
{
|
|
struct ex_ex arg;
|
|
char *tbl = (char *) 0;
|
|
int notable = 0;
|
|
|
|
if (eptr->ex_type == ET_SI) {
|
|
if (!expr->exp_var[eptr->ex_int].ex_ptr) {
|
|
/* SDY post_error() does not work in MAX/MSP yet
|
|
post_error((fts_object_t *) expr,
|
|
"expr: syntax error: no string for inlet %d\n", eptr->ex_int + 1);
|
|
*/
|
|
if (!(expr->exp_error & EE_NOTABLE)) {
|
|
post("expr: syntax error: no string for inlet %d", eptr->ex_int + 1);
|
|
post("expr: No more table errors will be reported");
|
|
post("expr: till the next reset");
|
|
expr->exp_error |= EE_NOTABLE;
|
|
}
|
|
notable++;
|
|
} else
|
|
tbl = (char *) expr->exp_var[eptr->ex_int].ex_ptr;
|
|
} else if (eptr->ex_type == ET_TBL)
|
|
tbl = (char *) eptr->ex_ptr;
|
|
else {
|
|
post_error((fts_object_t *) expr, "expr: eval_tbl: bad type %ld\n", eptr->ex_type);
|
|
notable++;
|
|
|
|
}
|
|
arg.ex_type = 0;
|
|
arg.ex_int = 0;
|
|
eptr = ex_eval(expr, ++eptr, &arg, idx);
|
|
|
|
optr->ex_type = ET_INT;
|
|
optr->ex_int = 0;
|
|
if (!notable)
|
|
(void)max_ex_tab(expr, (t_symbol *)tbl, &arg, optr);
|
|
if (arg.ex_type == ET_VEC)
|
|
fts_free(arg.ex_vec);
|
|
return (eptr);
|
|
}
|
|
|
|
/*
|
|
* eval_var -- evaluate a variable
|
|
*/
|
|
struct ex_ex *
|
|
eval_var(struct expr *expr, struct ex_ex *eptr, struct ex_ex *optr, int idx)
|
|
/* the expr object data pointer */
|
|
/* the operation stack */
|
|
/* the result pointer */
|
|
{
|
|
struct ex_ex arg;
|
|
char *var = (char *) 0;
|
|
int novar = 0;
|
|
|
|
if (eptr->ex_type == ET_SI) {
|
|
if (!expr->exp_var[eptr->ex_int].ex_ptr) {
|
|
/* SDY post_error() does not work in MAX/MSP yet
|
|
post_error((fts_object_t *) expr,
|
|
"expr: syntax error: no string for inlet %d\n", eptr->ex_int + 1);
|
|
*/
|
|
if (!(expr->exp_error & EE_NOVAR)) {
|
|
post("expr: syntax error: no string for inlet %d", eptr->ex_int + 1);
|
|
post("expr: No more table errors will be reported");
|
|
post("expr: till the next reset");
|
|
expr->exp_error |= EE_NOVAR;
|
|
}
|
|
novar++;
|
|
} else
|
|
var = (char *) expr->exp_var[eptr->ex_int].ex_ptr;
|
|
} else if (eptr->ex_type == ET_VAR)
|
|
var = (char *) eptr->ex_ptr;
|
|
else {
|
|
post_error((fts_object_t *) expr, "expr: eval_tbl: bad type %ld\n", eptr->ex_type);
|
|
novar++;
|
|
|
|
}
|
|
|
|
optr->ex_type = ET_INT;
|
|
optr->ex_int = 0;
|
|
if (!novar)
|
|
(void)max_ex_var(expr, (t_symbol *)var, optr);
|
|
return (++eptr);
|
|
}
|
|
|
|
/*
|
|
* eval_sigidx -- evaluate the value of an indexed signal for fexpr~
|
|
*/
|
|
struct ex_ex *
|
|
eval_sigidx(struct expr *expr, struct ex_ex *eptr, struct ex_ex *optr, int idx)
|
|
/* the expr object data pointer */
|
|
/* the operation stack */
|
|
/* the result pointer */
|
|
/* the index */
|
|
{
|
|
struct ex_ex arg;
|
|
struct ex_ex *reteptr;
|
|
int i = 0, j = 0;
|
|
t_float fi = 0, /* index in float */
|
|
rem_i = 0; /* remains of the float */
|
|
char *tbl;
|
|
|
|
arg.ex_type = 0;
|
|
arg.ex_int = 0;
|
|
reteptr = ex_eval(expr, eptr + 1, &arg, idx);
|
|
if (arg.ex_type == ET_FLT) {
|
|
fi = arg.ex_flt; /* float index */
|
|
i = (int) arg.ex_flt; /* integer index */
|
|
rem_i = arg.ex_flt - i; /* remains of integer */
|
|
} else if (arg.ex_type == ET_INT) {
|
|
fi = arg.ex_int; /* float index */
|
|
i = arg.ex_int;
|
|
rem_i = 0;
|
|
} else {
|
|
post("eval_sigidx: bad res type (%d)", arg.ex_type);
|
|
}
|
|
optr->ex_type = ET_FLT;
|
|
/*
|
|
* indexing an input vector
|
|
*/
|
|
if (eptr->ex_type == ET_XI) {
|
|
if (fi > 0) {
|
|
if (!(expr->exp_error & EE_BI_INPUT)) {
|
|
expr->exp_error |= EE_BI_INPUT;
|
|
post("expr: input vector index > 0, (vector x%d[%f])",
|
|
eptr->ex_int + 1, i + rem_i);
|
|
post("fexpr~: index assumed to be = 0");
|
|
post("fexpr~: no error report till next reset");
|
|
ex_print(eptr);
|
|
}
|
|
/* just replace it with zero */
|
|
i = 0;
|
|
rem_i = 0;
|
|
}
|
|
if (cal_sigidx(optr, i, rem_i, idx, expr->exp_vsize,
|
|
expr->exp_var[eptr->ex_int].ex_vec,
|
|
expr->exp_p_var[eptr->ex_int])) {
|
|
if (!(expr->exp_error & EE_BI_INPUT)) {
|
|
expr->exp_error |= EE_BI_INPUT;
|
|
post("expr: input vector index < -VectorSize, (vector x%d[%f])", eptr->ex_int + 1, fi);
|
|
ex_print(eptr);
|
|
post("fexpr~: index assumed to be = -%d",
|
|
expr->exp_vsize);
|
|
post("fexpr~: no error report till next reset");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* indexing an output vector
|
|
*/
|
|
} else if (eptr->ex_type == ET_YO) {
|
|
/* for output vectors index of zero is not legal */
|
|
if (fi >= 0) {
|
|
if (!(expr->exp_error & EE_BI_OUTPUT)) {
|
|
expr->exp_error |= EE_BI_OUTPUT;
|
|
post("fexpr~: bad output index, (%f)", fi);
|
|
ex_print(eptr);
|
|
post("fexpr~: no error report till next reset");
|
|
post("fexpr~: index assumed to be = -1");
|
|
}
|
|
i = -1;
|
|
}
|
|
if (eptr->ex_int >= expr->exp_nexpr) {
|
|
post("fexpr~: $y%d illegal: not that many exprs",
|
|
eptr->ex_int);
|
|
optr->ex_flt = 0;
|
|
return (reteptr);
|
|
}
|
|
if (cal_sigidx(optr, i, rem_i, idx, expr->exp_vsize,
|
|
expr->exp_tmpres[eptr->ex_int],
|
|
expr->exp_p_res[eptr->ex_int])) {
|
|
if (!(expr->exp_error & EE_BI_OUTPUT)) {
|
|
expr->exp_error |= EE_BI_OUTPUT;
|
|
post("fexpr~: bad output index, (%f)", fi);
|
|
ex_print(eptr);
|
|
post("fexpr~: index assumed to be = -%d",
|
|
expr->exp_vsize);
|
|
}
|
|
}
|
|
} else {
|
|
optr->ex_flt = 0;
|
|
post("fexpr~:eval_sigidx: internal error - unknown vector (%d)",
|
|
eptr->ex_type);
|
|
}
|
|
return (reteptr);
|
|
}
|
|
|
|
/*
|
|
* cal_sigidx -- given two tables (one current one previous) calculate an
|
|
* evaluation of a float index into the vectors by linear
|
|
* interpolation
|
|
* return 0 on success, 1 on failure (index out of bound)
|
|
*/
|
|
static int
|
|
cal_sigidx(struct ex_ex *optr, /* The output value */
|
|
int i, t_float rem_i,/* integer and fractinal part of index */
|
|
int idx, /* index of current fexpr~ processing */
|
|
int vsize, /* vector size */
|
|
t_float *curvec, t_float *prevec) /* current and previous table */
|
|
{
|
|
int n;
|
|
|
|
n = i + idx;
|
|
if (n > 0) {
|
|
/* from the curvec */
|
|
if (rem_i)
|
|
optr->ex_flt = curvec[n] +
|
|
rem_i * (curvec[n] - curvec[n - 1]);
|
|
else
|
|
optr->ex_flt = curvec[n];
|
|
return (0);
|
|
}
|
|
if (n == 0) {
|
|
/*
|
|
* this is the case that the remaining float
|
|
* is between two tables
|
|
*/
|
|
if (rem_i)
|
|
optr->ex_flt = *curvec +
|
|
rem_i * (*curvec - prevec[vsize - 1]);
|
|
else
|
|
optr->ex_flt = *curvec;
|
|
return (0);
|
|
}
|
|
/* find the index in the saved buffer */
|
|
n = vsize + n;
|
|
if (n > 0) {
|
|
if (rem_i)
|
|
optr->ex_flt = prevec[n] +
|
|
rem_i * (prevec[n] - prevec[n - 1]);
|
|
else
|
|
optr->ex_flt = prevec[n];
|
|
return (0);
|
|
}
|
|
/* out of bound */
|
|
optr->ex_flt = *prevec;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* getoken -- return 1 on syntax error otherwise 0
|
|
*/
|
|
int
|
|
getoken(struct expr *expr, struct ex_ex *eptr)
|
|
{
|
|
char *p;
|
|
long i;
|
|
|
|
|
|
if (!expr->exp_str) {
|
|
post("expr: getoken: expression string not set\n");
|
|
return (0);
|
|
}
|
|
retry:
|
|
if (!*expr->exp_str) {
|
|
eptr->ex_type = 0;
|
|
eptr->ex_int = 0;
|
|
return (0);
|
|
}
|
|
if (*expr->exp_str == ';') {
|
|
expr->exp_str++;
|
|
eptr->ex_type = 0;
|
|
eptr->ex_int = 0;
|
|
return (0);
|
|
}
|
|
eptr->ex_type = ET_OP;
|
|
switch (*expr->exp_str++) {
|
|
case '\\':
|
|
case ' ':
|
|
case '\t':
|
|
goto retry;
|
|
case ';':
|
|
post("expr: syntax error: ';' not implemented\n");
|
|
return (1);
|
|
case ',':
|
|
eptr->ex_op = OP_COMMA;
|
|
break;
|
|
case '(':
|
|
eptr->ex_op = OP_LP;
|
|
break;
|
|
case ')':
|
|
eptr->ex_op = OP_RP;
|
|
break;
|
|
case ']':
|
|
eptr->ex_op = OP_RB;
|
|
break;
|
|
case '~':
|
|
eptr->ex_op = OP_NEG;
|
|
break;
|
|
/* we will take care of unary minus later */
|
|
case '*':
|
|
eptr->ex_op = OP_MUL;
|
|
break;
|
|
case '/':
|
|
eptr->ex_op = OP_DIV;
|
|
break;
|
|
case '%':
|
|
eptr->ex_op = OP_MOD;
|
|
break;
|
|
case '+':
|
|
eptr->ex_op = OP_ADD;
|
|
break;
|
|
case '-':
|
|
eptr->ex_op = OP_SUB;
|
|
break;
|
|
case '^':
|
|
eptr->ex_op = OP_XOR;
|
|
break;
|
|
case '[':
|
|
eptr->ex_op = OP_LB;
|
|
break;
|
|
case '!':
|
|
if (*expr->exp_str == '=') {
|
|
eptr->ex_op = OP_NE;
|
|
expr->exp_str++;
|
|
} else
|
|
eptr->ex_op = OP_NOT;
|
|
break;
|
|
case '<':
|
|
switch (*expr->exp_str) {
|
|
case '<':
|
|
eptr->ex_op = OP_SL;
|
|
expr->exp_str++;
|
|
break;
|
|
case '=':
|
|
eptr->ex_op = OP_LE;
|
|
expr->exp_str++;
|
|
break;
|
|
default:
|
|
eptr->ex_op = OP_LT;
|
|
break;
|
|
}
|
|
break;
|
|
case '>':
|
|
switch (*expr->exp_str) {
|
|
case '>':
|
|
eptr->ex_op = OP_SR;
|
|
expr->exp_str++;
|
|
break;
|
|
case '=':
|
|
eptr->ex_op = OP_GE;
|
|
expr->exp_str++;
|
|
break;
|
|
default:
|
|
eptr->ex_op = OP_GT;
|
|
break;
|
|
}
|
|
break;
|
|
case '=':
|
|
if (*expr->exp_str++ != '=') {
|
|
post("expr: syntax error: =\n");
|
|
return (1);
|
|
}
|
|
eptr->ex_op = OP_EQ;
|
|
break;
|
|
/* do not allow the store till the function is fixed
|
|
if (*expr->exp_str != '=')
|
|
eptr->ex_op = OP_STORE;
|
|
else {
|
|
expr->exp_str++;
|
|
eptr->ex_op = OP_EQ;
|
|
}
|
|
break;
|
|
*/
|
|
|
|
case '&':
|
|
if (*expr->exp_str == '&') {
|
|
expr->exp_str++;
|
|
eptr->ex_op = OP_LAND;
|
|
} else
|
|
eptr->ex_op = OP_AND;
|
|
break;
|
|
|
|
case '|':
|
|
if ((*expr->exp_str == '|')) {
|
|
expr->exp_str++;
|
|
eptr->ex_op = OP_LOR;
|
|
} else
|
|
eptr->ex_op = OP_OR;
|
|
break;
|
|
case '$':
|
|
switch (*expr->exp_str++) {
|
|
case 'I':
|
|
case 'i':
|
|
eptr->ex_type = ET_II;
|
|
break;
|
|
case 'F':
|
|
case 'f':
|
|
eptr->ex_type = ET_FI;
|
|
break;
|
|
case 'S':
|
|
case 's':
|
|
eptr->ex_type = ET_SI;
|
|
break;
|
|
case 'V':
|
|
case 'v':
|
|
if (IS_EXPR_TILDE(expr)) {
|
|
eptr->ex_type = ET_VI;
|
|
break;
|
|
}
|
|
post("$v? works only for expr~");
|
|
post("expr: syntax error: %s\n", &expr->exp_str[-2]);
|
|
return (1);
|
|
case 'X':
|
|
case 'x':
|
|
if (IS_FEXPR_TILDE(expr)) {
|
|
eptr->ex_type = ET_XI;
|
|
if (isdigit(*expr->exp_str))
|
|
break;
|
|
/* for $x[] is a shorhand for $x1[] */
|
|
eptr->ex_int = 0;
|
|
goto noinletnum;
|
|
}
|
|
post("$x? works only for fexpr~");
|
|
post("expr: syntax error: %s\n", &expr->exp_str[-2]);
|
|
return (1);
|
|
case 'y':
|
|
case 'Y':
|
|
if (IS_FEXPR_TILDE(expr)) {
|
|
eptr->ex_type = ET_YO;
|
|
/*$y takes no number */
|
|
if (isdigit(*expr->exp_str))
|
|
break;
|
|
/* for $y[] is a shorhand for $y1[] */
|
|
eptr->ex_int = 0;
|
|
goto noinletnum;
|
|
}
|
|
post("$y works only for fexpr~");
|
|
default:
|
|
post("expr: syntax error: %s\n", &expr->exp_str[-2]);
|
|
return (1);
|
|
}
|
|
p = atoif(expr->exp_str, &eptr->ex_op, &i);
|
|
if (!p) {
|
|
post("expr: syntax error: %s\n", &expr->exp_str[-2]);
|
|
return (1);
|
|
}
|
|
if (i != ET_INT) {
|
|
post("expr: syntax error: %s\n", expr->exp_str);
|
|
return (1);
|
|
}
|
|
/*
|
|
* make the user inlets one based rather than zero based
|
|
* therefore we decrement the number that user has supplied
|
|
*/
|
|
if (!eptr->ex_op || (eptr->ex_op)-- > MAX_VARS) {
|
|
post("expr: syntax error: inlet or outlet out of range: %s\n",
|
|
expr->exp_str);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* until we can change the input type of inlets on
|
|
* the fly (at pd_new()
|
|
* time) the first input to expr~ is always a vectore
|
|
* and $f1 or $i1 is
|
|
* illegal for fexr~
|
|
*/
|
|
if (eptr->ex_op == 0 &&
|
|
(IS_FEXPR_TILDE(expr) || IS_EXPR_TILDE(expr)) &&
|
|
(eptr->ex_type==ET_II || eptr->ex_type==ET_FI ||
|
|
eptr->ex_type==ET_SI)) {
|
|
post("first inlet of expr~/fexpr~ can only be a vector");
|
|
return (1);
|
|
}
|
|
/* record the inlet or outlet type and check for consistency */
|
|
if (eptr->ex_type == ET_YO ) {
|
|
/* it is an outlet for fexpr~*/
|
|
/* no need to do anything */
|
|
;
|
|
} else if (!expr->exp_var[eptr->ex_op].ex_type)
|
|
expr->exp_var[eptr->ex_op].ex_type = eptr->ex_type;
|
|
else if (expr->exp_var[eptr->ex_op].ex_type != eptr->ex_type) {
|
|
post("expr: syntax error: inlets can only have one type: %s\n", expr->exp_str);
|
|
return (1);
|
|
}
|
|
expr->exp_str = p;
|
|
noinletnum:
|
|
break;
|
|
case '"':
|
|
{
|
|
struct ex_ex ex;
|
|
|
|
p = expr->exp_str;
|
|
if (!*expr->exp_str || *expr->exp_str == '"') {
|
|
post("expr: syntax error: empty symbol: %s\n", --expr->exp_str);
|
|
return (1);
|
|
}
|
|
if (getoken(expr, &ex))
|
|
return (1);
|
|
switch (ex.ex_type) {
|
|
case ET_STR:
|
|
if (ex_getsym(ex.ex_ptr, (t_symbol **)&(eptr->ex_ptr))) {
|
|
post("expr: syntax error: getoken: problms with ex_getsym\n");
|
|
return (1);
|
|
}
|
|
eptr->ex_type = ET_SYM;
|
|
break;
|
|
case ET_SI:
|
|
*eptr = ex;
|
|
eptr->ex_type = ET_VSYM;
|
|
break;
|
|
default:
|
|
post("expr: syntax error: bad symbol name: %s\n", p);
|
|
return (1);
|
|
}
|
|
if (*expr->exp_str++ != '"') {
|
|
post("expr: syntax error: missing '\"'\n");
|
|
return (1);
|
|
}
|
|
break;
|
|
}
|
|
case '.':
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
p = atoif(--expr->exp_str, &eptr->ex_int, &eptr->ex_type);
|
|
if (!p)
|
|
return (1);
|
|
expr->exp_str = p;
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* has to be a string, it should either be a
|
|
* function or a table
|
|
*/
|
|
p = --expr->exp_str;
|
|
for (i = 0; name_ok(*p); i++)
|
|
p++;
|
|
if (!i) {
|
|
post("expr: syntax error: %s\n", expr->exp_str);
|
|
return (1);
|
|
}
|
|
eptr->ex_ptr = (char *)fts_malloc(i + 1);
|
|
strncpy(eptr->ex_ptr, expr->exp_str, (int) i);
|
|
(eptr->ex_ptr)[i] = 0;
|
|
expr->exp_str = p;
|
|
/*
|
|
* we mark this as a string and later we will change this
|
|
* to either a function or a table
|
|
*/
|
|
eptr->ex_type = ET_STR;
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* atoif -- ascii to float or integer (understands hex numbers also)
|
|
*/
|
|
char *
|
|
atoif(char *s, long int *value, long int *type)
|
|
{
|
|
char *p;
|
|
long int_val = 0;
|
|
int flt = 0;
|
|
t_float pos = 0;
|
|
t_float flt_val = 0;
|
|
int base = 10;
|
|
|
|
p = s;
|
|
if (*p == '0' && (p[1] == 'x' || p[1] == 'X')) {
|
|
base = 16;
|
|
p += 2;
|
|
}
|
|
while (8) {
|
|
switch (*p) {
|
|
case '.':
|
|
if (flt || base != 10) {
|
|
post("expr: syntax error: %s\n", s);
|
|
return ((char *) 0);
|
|
}
|
|
flt++;
|
|
pos = 10;
|
|
flt_val = int_val;
|
|
break;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
if (flt) {
|
|
flt_val += (*p - '0') / pos;
|
|
pos *= 10;
|
|
} else {
|
|
int_val *= base;
|
|
int_val += (*p - '0');
|
|
}
|
|
break;
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'e':
|
|
case 'f':
|
|
if (base != 16 || flt) {
|
|
post("expr: syntax error: %s\n", s);
|
|
return ((char *) 0);
|
|
}
|
|
int_val *= base;
|
|
int_val += (*p - 'a' + 10);
|
|
break;
|
|
case 'A':
|
|
case 'B':
|
|
case 'C':
|
|
case 'D':
|
|
case 'E':
|
|
case 'F':
|
|
if (base != 16 || flt) {
|
|
post("expr: syntax error: %s\n", s);
|
|
return ((char *) 0);
|
|
}
|
|
int_val *= base;
|
|
int_val += (*p - 'A' + 10);
|
|
break;
|
|
default:
|
|
if (flt) {
|
|
*type = ET_FLT;
|
|
*((t_float *) value) = flt_val;
|
|
} else {
|
|
*type = ET_INT;
|
|
*value = int_val;
|
|
}
|
|
return (p);
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* find_func -- returns a pointer to the found function structure
|
|
* otherwise it returns 0
|
|
*/
|
|
t_ex_func *
|
|
find_func(char *s)
|
|
{
|
|
t_ex_func *f;
|
|
|
|
for (f = ex_funcs; f->f_name; f++)
|
|
if (!strcmp(f->f_name, s))
|
|
return (f);
|
|
return ((t_ex_func *) 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ex_print -- print an expression array
|
|
*/
|
|
|
|
void
|
|
ex_print(struct ex_ex *eptr)
|
|
{
|
|
|
|
while (eptr->ex_type) {
|
|
switch (eptr->ex_type) {
|
|
case ET_INT:
|
|
post("%ld ", eptr->ex_int);
|
|
break;
|
|
case ET_FLT:
|
|
post("%f ", eptr->ex_flt);
|
|
break;
|
|
case ET_STR:
|
|
post("%s ", eptr->ex_ptr);
|
|
break;
|
|
case ET_TBL:
|
|
case ET_VAR:
|
|
post("%s ", ex_symname((fts_symbol_t )eptr->ex_ptr));
|
|
break;
|
|
case ET_SYM:
|
|
post("\"%s\" ", ex_symname((fts_symbol_t )eptr->ex_ptr));
|
|
break;
|
|
case ET_VSYM:
|
|
post("\"$s%ld\" ", eptr->ex_int + 1);
|
|
break;
|
|
case ET_FUNC:
|
|
post("%s ",
|
|
((t_ex_func *)eptr->ex_ptr)->f_name);
|
|
break;
|
|
case ET_LP:
|
|
post("%c", '(');
|
|
break;
|
|
/* CHANGE
|
|
case ET_RP:
|
|
post("%c ", ')');
|
|
break;
|
|
*/
|
|
case ET_LB:
|
|
post("%c", '[');
|
|
break;
|
|
/* CHANGE
|
|
case ET_RB:
|
|
post("%c ", ']');
|
|
break;
|
|
*/
|
|
case ET_II:
|
|
post("$i%ld ", eptr->ex_int + 1);
|
|
break;
|
|
case ET_FI:
|
|
post("$f%ld ", eptr->ex_int + 1);
|
|
break;
|
|
case ET_SI:
|
|
post("$s%lx ", eptr->ex_ptr);
|
|
break;
|
|
case ET_VI:
|
|
post("$v%lx ", eptr->ex_vec);
|
|
break;
|
|
case ET_VEC:
|
|
post("vec = %ld ", eptr->ex_vec);
|
|
break;
|
|
case ET_YOM1:
|
|
case ET_YO:
|
|
post("$y%d", eptr->ex_int + 1);
|
|
break;
|
|
case ET_XI:
|
|
case ET_XI0:
|
|
post("$x%d", eptr->ex_int + 1);
|
|
break;
|
|
case ET_OP:
|
|
switch (eptr->ex_op) {
|
|
case OP_LP:
|
|
post("%c", '(');
|
|
break;
|
|
case OP_RP:
|
|
post("%c ", ')');
|
|
break;
|
|
case OP_LB:
|
|
post("%c", '[');
|
|
break;
|
|
case OP_RB:
|
|
post("%c ", ']');
|
|
break;
|
|
case OP_NOT:
|
|
post("%c", '!');
|
|
break;
|
|
case OP_NEG:
|
|
post("%c", '~');
|
|
break;
|
|
case OP_UMINUS:
|
|
post("%c", '-');
|
|
break;
|
|
case OP_MUL:
|
|
post("%c", '*');
|
|
break;
|
|
case OP_DIV:
|
|
post("%c", '/');
|
|
break;
|
|
case OP_MOD:
|
|
post("%c", '%');
|
|
break;
|
|
case OP_ADD:
|
|
post("%c", '+');
|
|
break;
|
|
case OP_SUB:
|
|
post("%c", '-');
|
|
break;
|
|
case OP_SL:
|
|
post("%s", "<<");
|
|
break;
|
|
case OP_SR:
|
|
post("%s", ">>");
|
|
break;
|
|
case OP_LT:
|
|
post("%c", '<');
|
|
break;
|
|
case OP_LE:
|
|
post("%s", "<=");
|
|
break;
|
|
case OP_GT:
|
|
post("%c", '>');
|
|
break;
|
|
case OP_GE:
|
|
post("%s", ">=");
|
|
break;
|
|
case OP_EQ:
|
|
post("%s", "==");
|
|
break;
|
|
case OP_STORE:
|
|
post("%s", "=");
|
|
break;
|
|
case OP_NE:
|
|
post("%s", "!=");
|
|
break;
|
|
case OP_AND:
|
|
post("%c", '&');
|
|
break;
|
|
case OP_XOR:
|
|
post("%c", '^');
|
|
break;
|
|
case OP_OR:
|
|
post("%c", '|');
|
|
break;
|
|
case OP_LAND:
|
|
post("%s", "&&");
|
|
break;
|
|
case OP_LOR:
|
|
post("%s", "||");
|
|
break;
|
|
case OP_COMMA:
|
|
post("%c", ',');
|
|
break;
|
|
case OP_SEMI:
|
|
post("%c", ';');
|
|
break;
|
|
default:
|
|
post("expr: ex_print: bad op 0x%lx\n", eptr->ex_op);
|
|
}
|
|
break;
|
|
default:
|
|
post("expr: ex_print: bad type 0x%lx\n", eptr->ex_type);
|
|
}
|
|
eptr++;
|
|
}
|
|
post("\n");
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
void ABORT( void) {bug("expr");}
|
|
#endif
|