- Modifications to compile ImageMagick
This commit is contained in:
parent
615ec83706
commit
83522c16c3
3442 changed files with 57 additions and 412926 deletions
416
ImageMagick/magick/matrix.c
Normal file
416
ImageMagick/magick/matrix.c
Normal file
|
|
@ -0,0 +1,416 @@
|
|||
/*
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% M M AAA TTTTT RRRR IIIII X X %
|
||||
% MM MM A A T R R I X X %
|
||||
% M M M AAAAA T RRRR I X %
|
||||
% M M A A T R R I X X %
|
||||
% M M A A T R R IIIII X X %
|
||||
% %
|
||||
% %
|
||||
% MagickCore Matrix Methods %
|
||||
% %
|
||||
% Software Design %
|
||||
% John Cristy %
|
||||
% August 2007 %
|
||||
% %
|
||||
% %
|
||||
% Copyright 1999-2013 ImageMagick Studio LLC, a non-profit organization %
|
||||
% dedicated to making software imaging solutions freely available. %
|
||||
% %
|
||||
% You may not use this file except in compliance with the License. You may %
|
||||
% obtain a copy of the License at %
|
||||
% %
|
||||
% http://www.imagemagick.org/script/license.php %
|
||||
% %
|
||||
% Unless required by applicable law or agreed to in writing, software %
|
||||
% distributed under the License is distributed on an "AS IS" BASIS, %
|
||||
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
|
||||
% See the License for the specific language governing permissions and %
|
||||
% limitations under the License. %
|
||||
% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
%
|
||||
*/
|
||||
|
||||
/*
|
||||
Include declarations.
|
||||
*/
|
||||
#include "magick/studio.h"
|
||||
#include "magick/matrix.h"
|
||||
#include "magick/memory_.h"
|
||||
#include "magick/pixel-private.h"
|
||||
#include "magick/utility.h"
|
||||
|
||||
/*
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% A c q u i r e M a g i c k M a t r i x %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
% AcquireMagickMatrix() allocates and returns a matrix in the form of an
|
||||
% array of pointers to an array of doubles, with all values pre-set to zero.
|
||||
%
|
||||
% This used to generate the two dimensional matrix, and vectors required
|
||||
% for the GaussJordanElimination() method below, solving some system of
|
||||
% simultanious equations.
|
||||
%
|
||||
% The format of the AcquireMagickMatrix method is:
|
||||
%
|
||||
% double **AcquireMagickMatrix(const size_t number_rows,
|
||||
% const size_t size)
|
||||
%
|
||||
% A description of each parameter follows:
|
||||
%
|
||||
% o number_rows: the number pointers for the array of pointers
|
||||
% (first dimension).
|
||||
%
|
||||
% o size: the size of the array of doubles each pointer points to
|
||||
% (second dimension).
|
||||
%
|
||||
*/
|
||||
MagickExport double **AcquireMagickMatrix(const size_t number_rows,
|
||||
const size_t size)
|
||||
{
|
||||
double
|
||||
**matrix;
|
||||
|
||||
register ssize_t
|
||||
i,
|
||||
j;
|
||||
|
||||
matrix=(double **) AcquireQuantumMemory(number_rows,sizeof(*matrix));
|
||||
if (matrix == (double **) NULL)
|
||||
return((double **)NULL);
|
||||
for (i=0; i < (ssize_t) number_rows; i++)
|
||||
{
|
||||
matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i]));
|
||||
if (matrix[i] == (double *) NULL)
|
||||
{
|
||||
for (j=0; j < i; j++)
|
||||
matrix[j]=(double *) RelinquishMagickMemory(matrix[j]);
|
||||
matrix=(double **) RelinquishMagickMemory(matrix);
|
||||
return((double **) NULL);
|
||||
}
|
||||
for (j=0; j < (ssize_t) size; j++)
|
||||
matrix[i][j]=0.0;
|
||||
}
|
||||
return(matrix);
|
||||
}
|
||||
|
||||
/*
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% G a u s s J o r d a n E l i m i n a t i o n %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
% GaussJordanElimination() returns a matrix in reduced row echelon form,
|
||||
% while simultaneously reducing and thus solving the augumented results
|
||||
% matrix.
|
||||
%
|
||||
% See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
|
||||
%
|
||||
% The format of the GaussJordanElimination method is:
|
||||
%
|
||||
% MagickBooleanType GaussJordanElimination(double **matrix,double **vectors,
|
||||
% const size_t rank,const size_t number_vectors)
|
||||
%
|
||||
% A description of each parameter follows:
|
||||
%
|
||||
% o matrix: the matrix to be reduced, as an 'array of row pointers'.
|
||||
%
|
||||
% o vectors: the additional matrix argumenting the matrix for row reduction.
|
||||
% Producing an 'array of column vectors'.
|
||||
%
|
||||
% o rank: The size of the matrix (both rows and columns).
|
||||
% Also represents the number terms that need to be solved.
|
||||
%
|
||||
% o number_vectors: Number of vectors columns, argumenting the above matrix.
|
||||
% Usally 1, but can be more for more complex equation solving.
|
||||
%
|
||||
% Note that the 'matrix' is given as a 'array of row pointers' of rank size.
|
||||
% That is values can be assigned as matrix[row][column] where 'row' is
|
||||
% typically the equation, and 'column' is the term of the equation.
|
||||
% That is the matrix is in the form of a 'row first array'.
|
||||
%
|
||||
% However 'vectors' is a 'array of column pointers' which can have any number
|
||||
% of columns, with each column array the same 'rank' size as 'matrix'.
|
||||
%
|
||||
% This allows for simpler handling of the results, especially is only one
|
||||
% column 'vector' is all that is required to produce the desired solution.
|
||||
%
|
||||
% For example, the 'vectors' can consist of a pointer to a simple array of
|
||||
% doubles. when only one set of simultanious equations is to be solved from
|
||||
% the given set of coefficient weighted terms.
|
||||
%
|
||||
% double **matrix = AcquireMagickMatrix(8UL,8UL);
|
||||
% double coefficents[8];
|
||||
% ...
|
||||
% GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
|
||||
%
|
||||
% However by specifing more 'columns' (as an 'array of vector columns',
|
||||
% you can use this function to solve a set of 'separable' equations.
|
||||
%
|
||||
% For example a distortion function where u = U(x,y) v = V(x,y)
|
||||
% And the functions U() and V() have separate coefficents, but are being
|
||||
% generated from a common x,y->u,v data set.
|
||||
%
|
||||
% Another example is generation of a color gradient from a set of colors
|
||||
% at specific coordients, such as a list x,y -> r,g,b,a
|
||||
% (Reference to be added - Anthony)
|
||||
%
|
||||
% You can also use the 'vectors' to generate an inverse of the given 'matrix'
|
||||
% though as a 'column first array' rather than a 'row first array'. For
|
||||
% details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
|
||||
%
|
||||
*/
|
||||
MagickExport MagickBooleanType GaussJordanElimination(double **matrix,
|
||||
double **vectors,const size_t rank,const size_t number_vectors)
|
||||
{
|
||||
#define GaussJordanSwap(x,y) \
|
||||
{ \
|
||||
if ((x) != (y)) \
|
||||
{ \
|
||||
(x)+=(y); \
|
||||
(y)=(x)-(y); \
|
||||
(x)=(x)-(y); \
|
||||
} \
|
||||
}
|
||||
|
||||
double
|
||||
max,
|
||||
scale;
|
||||
|
||||
register ssize_t
|
||||
i,
|
||||
j,
|
||||
k;
|
||||
|
||||
ssize_t
|
||||
column,
|
||||
*columns,
|
||||
*pivots,
|
||||
row,
|
||||
*rows;
|
||||
|
||||
columns=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*columns));
|
||||
rows=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*rows));
|
||||
pivots=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*pivots));
|
||||
if ((rows == (ssize_t *) NULL) || (columns == (ssize_t *) NULL) ||
|
||||
(pivots == (ssize_t *) NULL))
|
||||
{
|
||||
if (pivots != (ssize_t *) NULL)
|
||||
pivots=(ssize_t *) RelinquishMagickMemory(pivots);
|
||||
if (columns != (ssize_t *) NULL)
|
||||
columns=(ssize_t *) RelinquishMagickMemory(columns);
|
||||
if (rows != (ssize_t *) NULL)
|
||||
rows=(ssize_t *) RelinquishMagickMemory(rows);
|
||||
return(MagickFalse);
|
||||
}
|
||||
(void) ResetMagickMemory(columns,0,rank*sizeof(*columns));
|
||||
(void) ResetMagickMemory(rows,0,rank*sizeof(*rows));
|
||||
(void) ResetMagickMemory(pivots,0,rank*sizeof(*pivots));
|
||||
column=0;
|
||||
row=0;
|
||||
for (i=0; i < (ssize_t) rank; i++)
|
||||
{
|
||||
max=0.0;
|
||||
for (j=0; j < (ssize_t) rank; j++)
|
||||
if (pivots[j] != 1)
|
||||
{
|
||||
for (k=0; k < (ssize_t) rank; k++)
|
||||
if (pivots[k] != 0)
|
||||
{
|
||||
if (pivots[k] > 1)
|
||||
return(MagickFalse);
|
||||
}
|
||||
else
|
||||
if (fabs(matrix[j][k]) >= max)
|
||||
{
|
||||
max=fabs(matrix[j][k]);
|
||||
row=j;
|
||||
column=k;
|
||||
}
|
||||
}
|
||||
pivots[column]++;
|
||||
if (row != column)
|
||||
{
|
||||
for (k=0; k < (ssize_t) rank; k++)
|
||||
GaussJordanSwap(matrix[row][k],matrix[column][k]);
|
||||
for (k=0; k < (ssize_t) number_vectors; k++)
|
||||
GaussJordanSwap(vectors[k][row],vectors[k][column]);
|
||||
}
|
||||
rows[i]=row;
|
||||
columns[i]=column;
|
||||
if (matrix[column][column] == 0.0)
|
||||
return(MagickFalse); /* sigularity */
|
||||
scale=PerceptibleReciprocal(matrix[column][column]);
|
||||
matrix[column][column]=1.0;
|
||||
for (j=0; j < (ssize_t) rank; j++)
|
||||
matrix[column][j]*=scale;
|
||||
for (j=0; j < (ssize_t) number_vectors; j++)
|
||||
vectors[j][column]*=scale;
|
||||
for (j=0; j < (ssize_t) rank; j++)
|
||||
if (j != column)
|
||||
{
|
||||
scale=matrix[j][column];
|
||||
matrix[j][column]=0.0;
|
||||
for (k=0; k < (ssize_t) rank; k++)
|
||||
matrix[j][k]-=scale*matrix[column][k];
|
||||
for (k=0; k < (ssize_t) number_vectors; k++)
|
||||
vectors[k][j]-=scale*vectors[k][column];
|
||||
}
|
||||
}
|
||||
for (j=(ssize_t) rank-1; j >= 0; j--)
|
||||
if (columns[j] != rows[j])
|
||||
for (i=0; i < (ssize_t) rank; i++)
|
||||
GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]);
|
||||
pivots=(ssize_t *) RelinquishMagickMemory(pivots);
|
||||
rows=(ssize_t *) RelinquishMagickMemory(rows);
|
||||
columns=(ssize_t *) RelinquishMagickMemory(columns);
|
||||
return(MagickTrue);
|
||||
}
|
||||
|
||||
/*
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% L e a s t S q u a r e s A d d T e r m s %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
% LeastSquaresAddTerms() adds one set of terms and associate results to the
|
||||
% given matrix and vectors for solving using least-squares function fitting.
|
||||
%
|
||||
% The format of the AcquireMagickMatrix method is:
|
||||
%
|
||||
% void LeastSquaresAddTerms(double **matrix,double **vectors,
|
||||
% const double *terms,const double *results,const size_t rank,
|
||||
% const size_t number_vectors);
|
||||
%
|
||||
% A description of each parameter follows:
|
||||
%
|
||||
% o matrix: the square matrix to add given terms/results to.
|
||||
%
|
||||
% o vectors: the result vectors to add terms/results to.
|
||||
%
|
||||
% o terms: the pre-calculated terms (without the unknown coefficent
|
||||
% weights) that forms the equation being added.
|
||||
%
|
||||
% o results: the result(s) that should be generated from the given terms
|
||||
% weighted by the yet-to-be-solved coefficents.
|
||||
%
|
||||
% o rank: the rank or size of the dimensions of the square matrix.
|
||||
% Also the length of vectors, and number of terms being added.
|
||||
%
|
||||
% o number_vectors: Number of result vectors, and number or results being
|
||||
% added. Also represents the number of separable systems of equations
|
||||
% that is being solved.
|
||||
%
|
||||
% Example of use...
|
||||
%
|
||||
% 2 dimensional Affine Equations (which are separable)
|
||||
% c0*x + c2*y + c4*1 => u
|
||||
% c1*x + c3*y + c5*1 => v
|
||||
%
|
||||
% double **matrix = AcquireMagickMatrix(3UL,3UL);
|
||||
% double **vectors = AcquireMagickMatrix(2UL,3UL);
|
||||
% double terms[3], results[2];
|
||||
% ...
|
||||
% for each given x,y -> u,v
|
||||
% terms[0] = x;
|
||||
% terms[1] = y;
|
||||
% terms[2] = 1;
|
||||
% results[0] = u;
|
||||
% results[1] = v;
|
||||
% LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL);
|
||||
% ...
|
||||
% if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) {
|
||||
% c0 = vectors[0][0];
|
||||
% c2 = vectors[0][1];
|
||||
% c4 = vectors[0][2];
|
||||
% c1 = vectors[1][0];
|
||||
% c3 = vectors[1][1];
|
||||
% c5 = vectors[1][2];
|
||||
% }
|
||||
% else
|
||||
% printf("Matrix unsolvable\n);
|
||||
% RelinquishMagickMatrix(matrix,3UL);
|
||||
% RelinquishMagickMatrix(vectors,2UL);
|
||||
%
|
||||
*/
|
||||
MagickExport void LeastSquaresAddTerms(double **matrix,double **vectors,
|
||||
const double *terms,const double *results,const size_t rank,
|
||||
const size_t number_vectors)
|
||||
{
|
||||
register ssize_t
|
||||
i,
|
||||
j;
|
||||
|
||||
for (j=0; j < (ssize_t) rank; j++)
|
||||
{
|
||||
for (i=0; i < (ssize_t) rank; i++)
|
||||
matrix[i][j]+=terms[i]*terms[j];
|
||||
for (i=0; i < (ssize_t) number_vectors; i++)
|
||||
vectors[i][j]+=results[i]*terms[j];
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% R e l i n q u i s h M a g i c k M a t r i x %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
% RelinquishMagickMatrix() frees the previously acquired matrix (array of
|
||||
% pointers to arrays of doubles).
|
||||
%
|
||||
% The format of the RelinquishMagickMatrix method is:
|
||||
%
|
||||
% double **RelinquishMagickMatrix(double **matrix,
|
||||
% const size_t number_rows)
|
||||
%
|
||||
% A description of each parameter follows:
|
||||
%
|
||||
% o matrix: the matrix to relinquish
|
||||
%
|
||||
% o number_rows: the first dimension of the acquired matrix (number of
|
||||
% pointers)
|
||||
%
|
||||
*/
|
||||
MagickExport double **RelinquishMagickMatrix(double **matrix,
|
||||
const size_t number_rows)
|
||||
{
|
||||
register ssize_t
|
||||
i;
|
||||
|
||||
if (matrix == (double **) NULL )
|
||||
return(matrix);
|
||||
for (i=0; i < (ssize_t) number_rows; i++)
|
||||
matrix[i]=(double *) RelinquishMagickMemory(matrix[i]);
|
||||
matrix=(double **) RelinquishMagickMemory(matrix);
|
||||
return(matrix);
|
||||
}
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue