Antigona Release #1

Merged
snt merged 49 commits from filters into main 2024-05-26 12:42:53 +00:00
4 changed files with 234 additions and 250 deletions
Showing only changes of commit 5d56921aeb - Show all commits

View file

@ -40,15 +40,10 @@ libreMediaServerAudio::libreMediaServerAudio()
m_updateUi[i][3] = -1;
#endif
}
if (!m_mae.startEngine(m_layersQty)) {
if (!m_mae.startEngine(m_layersQty, m_settings->getAudioDeviceId(), m_settings->getAudioDeviceQty())) {
cout << "Can not start Audio Engine!" << endl;
exit(-1);
}
uint *audioDevList = m_settings->getAudioDeviceId();
if (!m_mae.startDevice(audioDevList, m_settings->getAudioDeviceQty())) {
cout << "Can not start Audio Device!" << audioDevList << endl;
exit(-1);
}
m_ola = new olaThread(this, m_layersQty);
Q_CHECK_PTR(m_ola);
m_ola->blockSignals(true);

View file

@ -28,7 +28,6 @@ static void ma_writer_node_process_pcm_frames(ma_node* pNode, const float** ppFr
ma_pcm_rb_commit_write(pWriteNode->pBuffer, *pFrameCountIn);
}
}
//*pFrameCountOut = 0;
ma_copy_pcm_frames(ppFramesOut[0], ppFramesIn[0], *pFrameCountOut, ma_format_f32, pWriteNode->channels);
}

View file

@ -4,10 +4,6 @@
#define BIAS 0.99f
#define FILTER_ORDER 3
static ma_pcm_rb aux1Buffer;
static ma_data_source_node g_dataSupplyNode;
static ma_data_source_rb g_dataSourceRB;
MiniAudioEngine::MiniAudioEngine() {}
void MiniAudioEngine::audioDataCallback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount)
@ -21,83 +17,78 @@ void MiniAudioEngine::audioDataCallback(ma_device* pDevice, void* pOutput, const
(void)pInput;
}
void MiniAudioEngine::audioDataCallback1(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount)
{
(void)pDevice;
ma_result result;
ma_uint32 pcmFramesAvailableInRB = 0;
ma_uint32 pcmFramesProcessed = 0;
while (pcmFramesProcessed < frameCount) {
pcmFramesAvailableInRB = ma_pcm_rb_available_read(&aux1Buffer);
if (pcmFramesAvailableInRB == 0) {
break;
}
ma_uint32 framesToRead = frameCount - pcmFramesProcessed;
if (framesToRead > pcmFramesAvailableInRB) {
framesToRead = pcmFramesAvailableInRB;
}
void* pReadBuffer = NULL;
ma_pcm_rb_acquire_read(&aux1Buffer, &framesToRead, &pReadBuffer);
if (pReadBuffer != NULL) {
ma_copy_pcm_frames(pOutput, pReadBuffer, framesToRead, FORMAT, CHANNELS);
ma_pcm_rb_commit_read(&aux1Buffer, framesToRead);
pcmFramesProcessed += framesToRead;
}/* else { break; }*/
}
(void)pInput;
}
void MiniAudioEngine::stopEngine()
{
for (uint i = 0; i < m_layersQty; i++) {
ma_sound_uninit(&m_currentSound[i]);
for (uint i = 0; i < m_mae.layersQty; i++) {
if (m_mae.mediaLoaded[i])
ma_sound_uninit(&m_mae.sounds[i]);
}
for (uint i = 0; i < m_devicesSelected; i++) {
for (uint j = 0; j < m_layersQty; j++) {
ma_node_uninit(&m_filterBank[i][j].input, NULL);
ma_hpf_node_uninit(&m_filterBank[i][j].hpf, NULL);
ma_loshelf_node_uninit(&m_filterBank[i][j].loshelf, NULL);
ma_peak_node_uninit(&m_filterBank[i][j].mLow, NULL);
ma_peak_node_uninit(&m_filterBank[i][j].mHigh, NULL);
ma_hishelf_node_uninit(&m_filterBank[i][j].hishelf, NULL);
ma_splitter_node_uninit(&m_filterBank[i][j].output, NULL);
for (uint i = 0; i < m_mae.layersQty; i++) {
ma_node_uninit(&m_mae.filters[i].input, NULL);
ma_hpf_node_uninit(&m_mae.filters[i].hpf, NULL);
ma_loshelf_node_uninit(&m_mae.filters[i].loshelf, NULL);
ma_peak_node_uninit(&m_mae.filters[i].mLow, NULL);
ma_peak_node_uninit(&m_mae.filters[i].mHigh, NULL);
ma_hishelf_node_uninit(&m_mae.filters[i].hishelf, NULL);
ma_splitter_node_uninit(&m_mae.filters[i].output, NULL);
}
for (uint i = 0; i < m_mae.audioDevicesQty; i++) {
if (i > 0) {
ma_writer_node_uninit(&m_mae.sendAuxNode[i], NULL);
ma_pcm_rb_uninit(&m_mae.auxBuffers[i]);
}
//ma_writer_node_uninit(&m_sendToAux[0], NULL);
//ma_pcm_rb_uninit(&aux1Buffer);
ma_engine_uninit(&m_engine[i]);
ma_device_uninit(&m_device[i]);
ma_engine_uninit(&m_mae.engines[i]);
ma_device_uninit(&m_mae.devices[i]);
}
ma_context_uninit(&m_context);
ma_resource_manager_uninit(&m_resourceManager);
ma_context_uninit(&m_mae.context);
ma_resource_manager_uninit(&m_mae.resourceManager);
}
bool MiniAudioEngine::startEngine(uint layers)
bool MiniAudioEngine::startEngine(uint layers, uint* audioDevicesId, uint audioDevicesQty)
{
ma_result result;
m_layersQty = layers;
for (uint i =0; i < m_layersQty; i++) {
m_mediaLoaded[i] = false;
m_currentLayerValues[i].status = Status::Iddle;
m_currentLayerValues[i].pan = 128;
m_currentLayerValues[i].pitch = 128;
m_currentLayerValues[i].vol = 0;
m_currentLayerValues[i].cursor = 0;
m_mae.layersQty = layers;
m_mae.audioDevicesId = audioDevicesId;
m_mae.audioDevicesQty = audioDevicesQty;
for (uint i =0; i < m_mae.layersQty; i++) {
m_mae.mediaLoaded[i] = false;
m_mae.currentStatus[i].status = Status::Iddle;
m_mae.currentStatus[i].pan = 128;
m_mae.currentStatus[i].pitch = 128;
m_mae.currentStatus[i].vol = 0;
m_mae.currentStatus[i].cursor = 0;
}
result = this->startContext();
if (result != MA_SUCCESS) return false;
result = this->getAllAudioDevices();
if (result != MA_SUCCESS) return false;
result = this->startDevices();
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed start audio devices." << endl;
return false;
}
result = this->setNodeGraph();
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to set node graph." << endl;
return false;
}
for (uint i = 0; i < m_mae.audioDevicesQty; i++) {
result = ma_engine_start(&m_mae.engines[i]);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to start audio device" << m_mae.audioDevicesId[i] << endl;
return false;
}
}
return true;
}
ma_result MiniAudioEngine::createFilterBank(int id, uint layer)
ma_result MiniAudioEngine::createFilterBank(uint layer)
{
ma_result result;
ma_node_graph *ng = ma_engine_get_node_graph(&m_engine[id]);
ma_node *endpoint = ma_engine_get_endpoint(&m_engine[id]);
filterBank *fb = &m_filterBank[id][layer];
ma_node_graph *ng = ma_engine_get_node_graph(&m_mae.engines[0]);
ma_node *endpoint = ma_engine_get_endpoint(&m_mae.engines[0]);
filterBank *fb = &m_mae.filters[layer];
ma_splitter_node_config splitterConfig = ma_splitter_node_config_init(CHANNELS);
result = ma_splitter_node_init(ng, &splitterConfig, NULL, &fb->input);
@ -140,13 +131,12 @@ ma_result MiniAudioEngine::createFilterBank(int id, uint layer)
cout << "ERROR " << result << ": Failed to init hi shelf filter node." << endl;
return result;
}
splitterConfig.outputBusCount = m_mae.audioDevicesQty;
result = ma_splitter_node_init(ng, &splitterConfig, NULL, &fb->output);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to init output node." << endl;
return result;
}
result = ma_node_attach_output_bus(&fb->input, 0, &fb->hpf, 0);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to attach input node." << endl;
@ -183,137 +173,143 @@ ma_result MiniAudioEngine::createFilterBank(int id, uint layer)
cout << "ERROR " << result << ": Failed to attach high shelf filter node." << endl;
return result;
}
if (id == 0) {
result = ma_node_attach_output_bus(&fb->output, 0, &m_sendToAux[id], 0);
if (m_mae.audioDevicesQty == 1) {
result = ma_node_attach_output_bus(&fb->output, 0, endpoint, 0);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to attach output node to engine." << endl;
cout << "ERROR " << result << ": Failed to attach output to endpoint." << endl;
return result;
}
result = ma_node_attach_output_bus(&fb->output, 1, &m_sendToAux[id], 1);
} else {
result = ma_node_attach_output_bus(&fb->output, 0, &m_mae.sendAuxNode[1], 0);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to attach output node to aux send 1." << endl;
return result;
}
result = ma_node_attach_output_bus(&fb->output, 1, &m_mae.sendAuxNode[1], 1);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to attach output node to aux send 1." << endl;
return result;
}
for (uint i = 2; i < m_mae.audioDevicesQty; i++) {
result = ma_node_attach_output_bus(&fb->output, i, &m_mae.sendAuxNode[i], 1);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to attach output node to aux send 1." << endl;
return result;
}
}
}
return result;
}
ma_result MiniAudioEngine::setNodeGraph(int id) {
ma_result MiniAudioEngine::setNodeGraph() {
ma_result result = MA_SUCCESS;
uint i = 0;
if (id == 0) {
ma_node_graph *ng = ma_engine_get_node_graph(&m_engine[id]);
size_t sizeInFrames = SAMPLE_RATE; // ma_get_bytes_per_frame(FORMAT, CHANNELS);
result = ma_pcm_rb_init(FORMAT, CHANNELS, sizeInFrames, NULL, NULL, &aux1Buffer);
if (result != MA_SUCCESS) {
printf("Failed to initialize ring buffer.\n");
return result;
}
ma_silence_pcm_frames(aux1Buffer.rb.pBuffer, sizeInFrames, FORMAT, CHANNELS);
ma_writer_node_config writerConfig = ma_writer_node_config_init(CHANNELS, SAMPLE_RATE * 5, &aux1Buffer);
result = ma_writer_node_init(ng, &writerConfig, NULL, &m_sendToAux[id]);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to init writer node." << endl;
return result;
}
result = ma_node_attach_output_bus(&m_sendToAux[id], 0, ma_engine_get_endpoint(&m_engine[id]), 0); // Pull API
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to attach writer node." << endl;
return result;
}
ma_node_graph *ng = ma_engine_get_node_graph(&m_mae.engines[0]);
for (uint i = 1; i < m_mae.audioDevicesQty; i++) {
size_t sizeInFrames = SAMPLE_RATE;
result = ma_pcm_rb_init(FORMAT, CHANNELS, sizeInFrames, NULL, NULL, &m_mae.auxBuffers[i]);
if (result != MA_SUCCESS) {
printf("Failed to initialize ring buffer.\n");
return result;
}
ma_silence_pcm_frames(m_mae.auxBuffers[i].rb.pBuffer, sizeInFrames, FORMAT, CHANNELS);
ma_writer_node_config writerConfig = ma_writer_node_config_init(CHANNELS, SAMPLE_RATE * 5, &m_mae.auxBuffers[i]);
result = ma_writer_node_init(ng, &writerConfig, NULL, &m_mae.sendAuxNode[i]);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to init writer node." << endl;
return result;
}
// esto va a dar problemas al sumar en el envío 0 una vez por cad envío extra.
// writer_node puede ser silencioso
// así ya estamos en el caso de disparar varios bang por cada envío en el mismo nodegraph
// es mejor que writer node tenga varias entradas, una por cada envío
// que se dispara con un único engine y proporciona un único stream de audio de vuelta a ese engine
// en vez de un puntero hay que pasarle un array de rb
result = ma_node_attach_output_bus(&m_mae.sendAuxNode[i], 0, ma_engine_get_endpoint(&m_mae.engines[0]), 0);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed to attach writer node." << endl;
return result;
}
result = ma_data_source_rb_init(&m_mae.dataSourceRB[i], &m_mae.auxBuffers[i]);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to init data source ring buffer" << endl;
return result;
}
ma_data_source_node_config dataSupplyNodeConfig = ma_data_source_node_config_init(&m_mae.dataSourceRB[i]);
result = ma_data_source_node_init(ma_engine_get_node_graph(&m_mae.engines[i]), &dataSupplyNodeConfig, NULL, &m_mae.dataSupplyNode[i]);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to init data source node" << endl;
return result;
}
result = ma_node_attach_output_bus(&m_mae.dataSupplyNode[i], 0, ma_engine_get_endpoint(&m_mae.engines[i]), 0);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to attach data source rb node" << endl;
return result;
}
}
while (result == MA_SUCCESS && i < m_layersQty) {
result = this->createFilterBank(id, i);
i++;
for (uint i = 0; i < m_mae.layersQty; i++) {
result = this->createFilterBank(i);
if (result != MA_SUCCESS) {
cout << "ERROR " << result << ": Failed creating filter bank." << endl;
}
}
return (result);
}
bool MiniAudioEngine::startDevice(uint *systemId, uint nb)
ma_result MiniAudioEngine::startDevices()
{
ma_result result = MA_SUCCESS;
ma_device_config deviceConfig;
ma_engine_config engineConfig;
m_devicesSelected = nb;
for (uint internalId = 0; internalId < nb; internalId++) {
deviceConfig = ma_device_config_init(ma_device_type_duplex);
deviceConfig.capture.pDeviceID = &m_pPlaybackDeviceInfos[systemId[internalId]].id;
deviceConfig.capture.format = m_resourceManager.config.decodedFormat;
deviceConfig.capture.channels = CHANNELS;
deviceConfig.capture.shareMode = ma_share_mode_shared;
deviceConfig.playback.pDeviceID = &m_pPlaybackDeviceInfos[systemId[internalId]].id;
deviceConfig.playback.format = m_resourceManager.config.decodedFormat;
deviceConfig.playback.channels = CHANNELS;
deviceConfig.sampleRate = m_resourceManager.config.decodedSampleRate;
if (internalId == 0)
deviceConfig.dataCallback = audioDataCallback;
else if (internalId == 1)
deviceConfig.dataCallback = audioDataCallback1;
deviceConfig.pUserData = &m_engine[internalId];
result = ma_device_init(&m_context, &deviceConfig, &m_device[internalId]);
deviceConfig = ma_device_config_init(ma_device_type_duplex);
deviceConfig.capture.format = m_mae.resourceManager.config.decodedFormat;
deviceConfig.capture.channels = CHANNELS;
deviceConfig.playback.channels = CHANNELS;
deviceConfig.capture.shareMode = ma_share_mode_shared;
deviceConfig.playback.format = m_mae.resourceManager.config.decodedFormat;
deviceConfig.sampleRate = m_mae.resourceManager.config.decodedSampleRate;
deviceConfig.dataCallback = audioDataCallback;
engineConfig = ma_engine_config_init();
engineConfig.pResourceManager = &m_mae.resourceManager;
engineConfig.gainSmoothTimeInMilliseconds = SAMPLE_RATE / 25;
engineConfig.noAutoStart = MA_TRUE;
for (uint internalId = 0; internalId < m_mae.audioDevicesQty; internalId++) {
deviceConfig.capture.pDeviceID = &m_mae.pPlaybackDeviceInfos[m_mae.audioDevicesId[internalId]].id;
deviceConfig.playback.pDeviceID = &m_mae.pPlaybackDeviceInfos[m_mae.audioDevicesId[internalId]].id;
deviceConfig.pUserData = &m_mae.engines[internalId];
result = ma_device_init(&m_mae.context, &deviceConfig, &m_mae.devices[internalId]);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to initialize audio device " << m_pPlaybackDeviceInfos[*systemId].name << endl;
return false;
cout << "Error " << result << ": Failed to initialize audio device " << m_mae.pPlaybackDeviceInfos[m_mae.audioDevicesId[internalId]].name << endl;
return result;
}
engineConfig = ma_engine_config_init();
engineConfig.pDevice = &m_device[internalId];
engineConfig.pResourceManager = &m_resourceManager;
engineConfig.gainSmoothTimeInMilliseconds = SAMPLE_RATE / 100;
engineConfig.noAutoStart = MA_TRUE;
result = ma_engine_init(&engineConfig, &m_engine[internalId]);
engineConfig.pDevice = &m_mae.devices[internalId];
result = ma_engine_init(&engineConfig, &m_mae.engines[internalId]);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to initialize audio engine" << endl;
return false;
return result;
}
result = this->setNodeGraph(internalId);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to set node graph " << systemId[internalId] << endl;
return false;
}
result = ma_engine_start(&m_engine[internalId]);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to start audio engine" << systemId[internalId] << endl;
return false;
}
cout << "Initialized Audio Device. internalId: " << internalId << " systemId: " << systemId[internalId] << " " << m_pPlaybackDeviceInfos[systemId[internalId]].name << endl;
cout << "Initialized Audio Device. internalId: " << internalId << " systemId: " << m_mae.audioDevicesId[internalId] << " " << m_mae.pPlaybackDeviceInfos[m_mae.audioDevicesId[internalId]].name << endl;
}
//result = ma_data_source_rb_init(&g_dataSourceRB, &aux1Buffer);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to init data source ring buffer" << endl;
return false;
}
ma_data_source_node_config dataSupplyNodeConfig = ma_data_source_node_config_init(&g_dataSourceRB);
//result = ma_data_source_node_init(ma_engine_get_node_graph(&m_engine[1]), &dataSupplyNodeConfig, NULL, &g_dataSupplyNode);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to init data source node" << endl;
return false;
}
//result = ma_node_attach_output_bus(&g_dataSupplyNode, 0, ma_engine_get_endpoint(&m_engine[1]), 0);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to attach data source rb node" << endl;
return false;
}
cout << "data source node state " << ma_node_get_state(&g_dataSupplyNode.base) << endl;
return true;
return result;
}
ma_result MiniAudioEngine::startContext()
{
ma_result result;
m_resourceManagerConfig = ma_resource_manager_config_init();
m_resourceManagerConfig.decodedFormat = FORMAT;
m_resourceManagerConfig.decodedChannels = CHANNELS;
m_resourceManagerConfig.decodedSampleRate = SAMPLE_RATE;
m_resourceManagerConfig.jobThreadCount = 4;
result = ma_resource_manager_init(&m_resourceManagerConfig, &m_resourceManager);
ma_resource_manager_config resourceManagerConfig = ma_resource_manager_config_init();
resourceManagerConfig.decodedFormat = FORMAT;
resourceManagerConfig.decodedChannels = CHANNELS;
resourceManagerConfig.decodedSampleRate = SAMPLE_RATE;
resourceManagerConfig.jobThreadCount = MAX_LAYERS;
result = ma_resource_manager_init(&resourceManagerConfig, &m_mae.resourceManager);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to initialize audio resource manager." << endl;
return result;
}
result = ma_context_init(NULL, 0, NULL, &m_context);
result = ma_context_init(NULL, 0, NULL, &m_mae.context);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to initialize audio context." << endl;
}
@ -325,15 +321,15 @@ ma_result MiniAudioEngine::getAllAudioDevices()
{
ma_result result;
result = ma_context_get_devices(&m_context, &m_pPlaybackDeviceInfos, &m_playbackDeviceCount, NULL, NULL);
result = ma_context_get_devices(&m_mae.context, &m_mae.pPlaybackDeviceInfos, &m_mae.playbackDeviceCount, NULL, NULL);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to enumerate playback devices." << endl;
ma_context_uninit(&m_context);
ma_context_uninit(&m_mae.context);
return result;
}
cout << "Audio devices available:" << endl;
for (ma_uint32 iAvailableDevice = 0; iAvailableDevice < m_playbackDeviceCount; iAvailableDevice += 1) {
cout << iAvailableDevice << " : " << m_pPlaybackDeviceInfos[iAvailableDevice].name << endl;
for (ma_uint32 iAvailableDevice = 0; iAvailableDevice < m_mae.playbackDeviceCount; iAvailableDevice += 1) {
cout << iAvailableDevice << " : " << m_mae.pPlaybackDeviceInfos[iAvailableDevice].name << endl;
}
return result;
}
@ -342,28 +338,26 @@ ma_result MiniAudioEngine::loadMedia(int layer, char *file, uint audioDevice)
{
ma_result result;
// - iniciar un sonido por cada capa, copiar la capa en otro dispositivo
// - writer node y source con el buffer escrito en el otro device
if (m_mediaLoaded[layer] == true)
if (m_mae.mediaLoaded[layer] == true)
{
ma_sound_uninit(&m_currentSound[layer]);
m_mediaLoaded[layer] = false;
ma_sound_uninit(&m_mae.sounds[layer]);
m_mae.mediaLoaded[layer] = false;
}
result = ma_sound_init_from_file(&m_engine[audioDevice], file, \
result = ma_sound_init_from_file(&m_mae.engines[0], file, \
MA_SOUND_FLAG_NO_SPATIALIZATION \
, NULL, NULL, &m_currentSound[layer]);
, NULL, NULL, &m_mae.sounds[layer]);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to load file " << file << endl;
return result;
}
result = ma_node_attach_output_bus(&m_currentSound[layer], 0, &m_filterBank[audioDevice][layer].input, 0);
result = ma_node_attach_output_bus(&m_mae.sounds[layer], 0, &m_mae.filters[layer].input, 0);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to attach sound output bus " << audioDevice << endl;
//return result;
return result;
}
m_mediaLoaded[layer] = true;
m_mae.mediaLoaded[layer] = true;
this->refreshValues(layer);
m_currentLayerValues[layer].media = file;
m_mae.currentStatus[layer].media = file;
return result;
}
@ -372,9 +366,9 @@ float MiniAudioEngine::getDuration(int layer)
ma_result result;
float ret;
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return MA_DOES_NOT_EXIST;
result = ma_sound_get_length_in_seconds(&m_currentSound[layer], &ret);
result = ma_sound_get_length_in_seconds(&m_mae.sounds[layer], &ret);
if (result != MA_SUCCESS) {
return result;
}
@ -386,9 +380,9 @@ float MiniAudioEngine::getCursor(int layer)
ma_result result;
float ret = 0;
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return MA_DOES_NOT_EXIST;
result = ma_sound_get_cursor_in_seconds(&m_currentSound[layer], &ret);
result = ma_sound_get_cursor_in_seconds(&m_mae.sounds[layer], &ret);
if (result != MA_SUCCESS)
{
cout << "Error" << result << ": Can not get cursor " << layer << endl;
@ -403,16 +397,16 @@ ma_result MiniAudioEngine::printFormatInfo(int layer)
ma_uint32 channels;
ma_uint32 sampleRate;
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return MA_DOES_NOT_EXIST;
ma_result result = ma_sound_get_data_format(&m_currentSound[layer], \
ma_result result = ma_sound_get_data_format(&m_mae.sounds[layer], \
&format, &channels, &sampleRate, NULL, 0);
if (result != MA_SUCCESS) {
cout << "Error " << result << ": Failed to get data format " << layer;
cout << endl;
} else {
cout << "Layer:" << layer << " ";
cout << m_currentLayerValues[layer].media.toLatin1().data();
cout << m_mae.currentStatus[layer].media.toLatin1().data();
cout << " samples/sec:" << sampleRate << " format:" << format;
cout << " channels:" << channels << endl;
}
@ -422,50 +416,50 @@ ma_result MiniAudioEngine::printFormatInfo(int layer)
// Expects between 0 and 1 vol value
void MiniAudioEngine::volChanged(int layer, float vol)
{
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return;
if (vol >= 1)
vol = 0.99f;
ma_sound_group_set_fade_in_milliseconds(&m_currentSound[layer], -1, pow(vol, 3), FADE_TIME);
m_currentLayerValues[layer].vol = vol;
ma_sound_group_set_fade_in_milliseconds(&m_mae.sounds[layer], -1, pow(vol, 3), FADE_TIME);
m_mae.currentStatus[layer].vol = vol;
}
void MiniAudioEngine::panChanged(int layer, float value)
{
float result;
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return;
result = (value / 128.0) - 1.0;
ma_sound_group_set_pan(&m_currentSound[layer], result);
m_currentLayerValues[layer].pan = value;
ma_sound_group_set_pan(&m_mae.sounds[layer], result);
m_mae.currentStatus[layer].pan = value;
}
void MiniAudioEngine::pitchChanged(int layer, float value)
{
float pitch;
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return;
pitch = value / 128.0;
ma_sound_group_set_pitch(&m_currentSound[layer], pitch);
m_currentLayerValues[layer].pitch = value;
ma_sound_group_set_pitch(&m_mae.sounds[layer], pitch);
m_mae.currentStatus[layer].pitch = value;
}
ma_result MiniAudioEngine::playbackChanged(int layer, Status status)
{
ma_result result = MA_SUCCESS;
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return MA_DOES_NOT_EXIST;
bool loop = false;
switch (status) {
case Status::Paused:
result = ma_sound_stop_with_fade_in_milliseconds(&m_currentSound[layer], FADE_TIME);
result = ma_sound_stop_with_fade_in_milliseconds(&m_mae.sounds[layer], FADE_TIME);
break;
case Status::Stopped:
ma_sound_stop_with_fade_in_milliseconds(&m_currentSound[layer], FADE_TIME);
result = this->seekToCursor(layer, m_currentLayerValues[layer].cursor);
ma_sound_stop_with_fade_in_milliseconds(&m_mae.sounds[layer], FADE_TIME);
result = this->seekToCursor(layer, m_mae.currentStatus[layer].cursor);
break;
case Status::PlayingLoop:
loop = true;
@ -473,18 +467,18 @@ ma_result MiniAudioEngine::playbackChanged(int layer, Status status)
case Status::PlayingFolder:
case Status::PlayingFolderLoop:
case Status::PlayingFolderRandom:
ma_sound_set_stop_time_in_milliseconds(&m_currentSound[layer], ~(ma_uint64)0);
ma_sound_set_looping(&m_currentSound[layer], loop);
result = ma_sound_start(&m_currentSound[layer]);
if (m_currentLayerValues[layer].cursor != 0) {
ma_sound_set_stop_time_in_milliseconds(&m_mae.sounds[layer], ~(ma_uint64)0);
ma_sound_set_looping(&m_mae.sounds[layer], loop);
result = ma_sound_start(&m_mae.sounds[layer]);
if (m_mae.currentStatus[layer].cursor != 0) {
usleep(1000 * 50); // Avoid small glitch at start, how to flush the cached buffers in audio pipe line?
}
this->volChanged(layer, m_currentLayerValues[layer].vol);
this->volChanged(layer, m_mae.currentStatus[layer].vol);
default:
break;
}
if (result == MA_SUCCESS)
m_currentLayerValues[layer].status = status;
m_mae.currentStatus[layer].status = status;
return result;
}
@ -493,13 +487,13 @@ ma_result MiniAudioEngine::seekToCursor(int layer, int cursor)
ma_result result = MA_SUCCESS;
ma_uint64 end, start;
if (m_mediaLoaded[layer] == false)
if (m_mae.mediaLoaded[layer] == false)
return MA_DOES_NOT_EXIST;
result = ma_sound_get_length_in_pcm_frames(&m_currentSound[layer], &end);
result = ma_sound_get_length_in_pcm_frames(&m_mae.sounds[layer], &end);
if (result != MA_SUCCESS) { return result; }
start = (cursor * end) / 65025;
result = ma_sound_seek_to_pcm_frame(&m_currentSound[layer], start);
//result = ma_data_source_set_loop_point_in_pcm_frames(&m_currentSound[layer], start, end); // this do nothing here, it must be done after set_looping or start?
result = ma_sound_seek_to_pcm_frame(&m_mae.sounds[layer], start);
//result = ma_data_source_set_loop_point_in_pcm_frames(&m_mae.sounds[layer], start, end); // this do nothing here, it must be done after set_looping or start?
return (result);
}
@ -507,30 +501,30 @@ ma_result MiniAudioEngine::setCursor(int layer, int cursor)
{
ma_result result = MA_SUCCESS;
m_currentLayerValues[layer].cursor = cursor;
m_mae.currentStatus[layer].cursor = cursor;
result = this->seekToCursor(layer, cursor);
return (result);
}
Status MiniAudioEngine::getStatus(int layer)
{
return m_currentLayerValues[layer].status;
return m_mae.currentStatus[layer].status;
}
void MiniAudioEngine::refreshValues(int layer)
{
this->seekToCursor(layer, m_currentLayerValues[layer].cursor);
this->panChanged(layer, m_currentLayerValues[layer].pan);
this->volChanged(layer, m_currentLayerValues[layer].vol);
this->pitchChanged(layer, m_currentLayerValues[layer].pitch);
this->playbackChanged(layer, m_currentLayerValues[layer].status);
this->seekToCursor(layer, m_mae.currentStatus[layer].cursor);
this->panChanged(layer, m_mae.currentStatus[layer].pan);
this->volChanged(layer, m_mae.currentStatus[layer].vol);
this->pitchChanged(layer, m_mae.currentStatus[layer].pitch);
this->playbackChanged(layer, m_mae.currentStatus[layer].status);
}
ma_result MiniAudioEngine::filterParamChanged(int layer, int audioDevice, int channel, int value)
{
(void)audioDevice;
ma_result result = MA_SUCCESS;
filterBank *fb = &m_filterBank[audioDevice][layer];
filterBank *fb = &m_mae.filters[layer];
if (channel == HP_FREQ) {
fb->hpfConfig.hpf.cutoffFrequency = double((value * 1.31) + 16.0f); // 16 - 350
@ -641,7 +635,8 @@ ma_result MiniAudioEngine::filterParamChanged(int layer, int audioDevice, int ch
bool MiniAudioEngine::setBypass(int audioDevice, int layer, bool bypass)
{
filterBank *fb = &m_filterBank[audioDevice][layer];
(void)audioDevice;
filterBank *fb = &m_mae.filters[layer];
if (bypass) {
ma_node_set_output_bus_volume(&fb->input, 1, 1.0f);

View file

@ -15,7 +15,6 @@
using namespace std;
#include "defines.h"
typedef struct
{
ma_splitter_node input;
@ -30,32 +29,40 @@ typedef struct
ma_hishelf_node hishelf;
ma_hishelf_node_config hishelfConfig;
ma_splitter_node output;
ma_writer_node send1;
ma_data_source_node return1;
ma_audio_buffer_ref supplyReturn1;
} filterBank;
typedef struct
{
ma_engine m_engine[MAX_AUDIODEVICES];
filterBank m_filterBank[MAX_AUDIODEVICES][MAX_LAYERS];
ma_writer_node m_sendAux1[MAX_LAYERS];
ma_pcm_rb *aux1Buffer;
} audioObjects;
ma_engine engines[MAX_AUDIODEVICES];
ma_device devices[MAX_AUDIODEVICES];
filterBank filters[MAX_LAYERS];
ma_writer_node sendAuxNode[MAX_AUDIODEVICES];
ma_pcm_rb auxBuffers[MAX_AUDIODEVICES];
ma_node_graph ng;
layerData currentStatus[MAX_LAYERS];
ma_sound sounds[MAX_LAYERS];
ma_resource_manager resourceManager;
ma_context context;
ma_device_info* pPlaybackDeviceInfos;
ma_uint32 playbackDeviceCount;
ma_uint32 devicesSelected;
ma_bool8 mediaLoaded[MAX_LAYERS];
uint layersQty;
uint *audioDevicesId;
uint audioDevicesQty;
ma_data_source_node dataSupplyNode[MAX_AUDIODEVICES];
ma_data_source_rb dataSourceRB[MAX_AUDIODEVICES];
} MAE;
class MiniAudioEngine
{
friend class libreMediaServerAudio;
static ma_pcm_rb *rb;
public:
MiniAudioEngine();
void stopEngine();
bool startEngine(uint layersQty);
bool startDevice(uint *id, uint nb);
bool startEngine(uint layersQty, uint* audioDevicesID, uint audioDevicesQty);
static void audioDataCallback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
static void audioDataCallback1(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
bool setBypass(int audioDevice, int layer, bool bypass);
protected:
ma_result loadMedia(int layer, char *media, uint audioDevice);
@ -69,33 +76,21 @@ protected:
float getCursor(int layer);
Status getStatus(int layer);
inline float getVol(int layer) {
return ma_sound_get_volume(&m_currentSound[layer]); }
inline bool getAtEnd(int layer) { return m_currentSound[layer].atEnd; }
return ma_sound_get_volume(&m_mae.sounds[layer]); }
inline bool getAtEnd(int layer) { return m_mae.sounds[layer].atEnd; }
ma_result filterParamChanged(int layer, int audioDevice, int channel, int value);
bool setBypass(int audioDevice, int layer, bool bypass);
private:
ma_resource_manager_config m_resourceManagerConfig;
ma_resource_manager m_resourceManager;
ma_context m_context;
ma_device_info* m_pPlaybackDeviceInfos;
ma_uint32 m_playbackDeviceCount;
ma_uint32 m_devicesSelected;
ma_device m_device[MAX_AUDIODEVICES];
ma_sound m_currentSound[MAX_LAYERS];
ma_bool8 m_mediaLoaded[MAX_LAYERS];
layerData m_currentLayerValues[MAX_LAYERS];
filterBank m_filterBank[MAX_AUDIODEVICES][MAX_LAYERS];
ma_engine m_engine[MAX_AUDIODEVICES];
uint m_layersQty;
ma_writer_node m_sendToAux[MAX_LAYERS];
audioObjects m_audioObjects;
MAE m_mae;
ma_result startDevices();
ma_result getAllAudioDevices();
ma_result startContext();
void refreshValues(int layer);
ma_result seekToCursor(int layer, int cursor);
ma_result setNodeGraph(int id);
ma_result createFilterBank(int id, uint layer);
ma_result setNodeGraph();
ma_result createFilterBank(uint layer);
};
#endif // MINIAUDIOENGINE_H